
An Action Language for Multi-Agent Domains

Chitta Baral†, Gregory Gelfond‡, Enrico Pontelli�, Tran Cao Son�?

†Department of Computer Science and Engineering, Arizona State University
‡Department of Computer Science, University of Nebraska Omaha
�Department of Computer Science, New Mexico State University

?Corresponding author

Abstract

The goal of this paper is to investigate an action language, called mA∗, for representing and
reasoning about actions and change in multi-agent domains. The language, as designed, can also
serve as a specification language for epistemic planning, thereby addressing an important issue
in the development of multi-agent epistemic planning systems. The mA∗ action language is a
generalization of the single-agent action languages, extensively studied in the literature, to the
case of multi-agent domains. The language allows the representation of different types of actions
that an agent can perform in a domain where many other agents might be present—such as world-
altering actions, sensing actions, and communication actions. The action language also allows the
specification of agents’ dynamic awareness of action occurrences—which has implications on what
agents’ know about the world and other agents’ knowledge about the world. These features are
embedded in a language that is simple, yet powerful enough to address a large variety of knowledge
manipulation scenarios in multi-agent domains.

The semantics of mA∗ relies on the notion of state, which is described by a pointed Kripke
model and is used to encode the agents’ knowledge1 and the real state of the world. The semantics
is defined by a transition function that maps pairs of actions and states into sets of states. The paper
presents a number of properties of the action theories and relates mA∗ to other relevant formalisms
in the area of reasoning about actions in multi-agent domains.

Keywords: Action Languages, Epistemic Planning, Reasoning about Knowledge

1. Introduction

1.1. Motivations
Reasoning about Actions and Change (RAC) has been a research focus since the early days of

artificial intelligence (McCarthy, 1959), and languages for representing actions and their effects have
been proposed very early in the AI literature (Fikes and Nilson, 1971). While the early papers on this
topic by Fikes and Nilson (1971) did not include formal semantics, papers with formal semantics

Email address: chitta@asu.edu, ggelfond@unomaha.edu, epontell@cs.nmsu.edu,
tson@cs.nmsu.edu (Chitta Baral†, Gregory Gelfond‡, Enrico Pontelli�, Tran Cao Son�?)

1We will use the term “knowledge” to mean both “knowledge” and “beliefs” when clear from the context.

Preprint submitted to AI Journal July 1, 2021

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0004370221001521
Manuscript_857eed0f6da798a17d01bee9f405f91a

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0004370221001521

came some years after, with leading efforts by Lifschitz (1987). The approach adopted in this paper
is predominantly influenced by the methodology for representing and reasoning about actions and
change proposed by Gelfond and Lifschitz (1993). In this approach, actions of agents are described
in a high-level language, with an English-like syntax and a transition function-based semantics.
Action languages offer several benefits, including a succinct way for representing dynamic domains.
The approach proposed in this paper is also related to action description languages developed for
planning, such as (Pednault, 1989; Ghallab et al., 1998).

Over the years, several action languages (e.g., A, B, and C) have been developed, as discussed
in (Gelfond and Lifschitz, 1998). Each of these languages addresses some important problems in
RAC, e.g., the ramification problem, concurrency, actions with duration, and knowledge of agents.
Action languages have also provided the foundations for several successful approaches to automated
planning. For example, the language C is used in the planner C-PLAN (Castellini et al., 2001) and
the language B is used in CPA (Son et al., 2005). The Planning Domain Definition Language
(PDDL) (Ghallab et al., 1998), the de-facto standard language for planning systems, could also be
viewed as a type of action language (a generalization of STRIPS). However, the primary focus of
all these research efforts has been about reasoning within single-agent domains.

In single-agent domains, reasoning about actions and change mainly involves reasoning about
what is true in the world, what the agent knows about the world, how the agent can manipulate the
world (using world-changing actions) to reach particular states, and how the agent (using sensing
actions) can learn unknown aspects of the world. In multi-agent domains, an agent’s action may not
just change the world and the agent’s knowledge about the world, but also may change other agents’
knowledge. Similarly, the goals of an agent in a multi-agent world may involve manipulating the
knowledge of other agents—in particular, this may involve not just their knowledge about the world,
but also their knowledge about other agents’ knowledge about the world. Although there is a large
body of research on multi-agent planning (see, e.g., (Durfee, 1999; de Weerdt et al., 2003; de Weerdt
and Clement, 2009; Allen and Zilberstein, 2009; Bernstein et al., 2002; Goldman and Zilberstein,
2004; Guestrin et al., 2001; Nair et al., 2003; Peshkin and Savova, 2002)), relatively few efforts
address the above aspects of multi-agent domains, which offer a number of new research challenges
in representing and reasoning about actions and change. The following simple example illustrates
some of these issues.

Example 1 (Three Agents and the Coin Box). Three agents, A, B, and C, are in a room. In the
middle of the room there is a box containing a coin. It is common knowledge that:
• None of the agents knows whether the coin lies heads or tails up;
• The box is locked and one needs a key to open it; agentA has the key of the box and everyone
knows this;
• In order to learn whether the coin lies heads or tails up, an agent can peek into the box—but
this requires the box to be open;
• If one agent is looking at the box and a second agent peeks into the box, then the first agent
will observe this fact and will be able to conclude that the second agent knows the status of
the coin; on the other hand, the first agent’s knowledge about which face of the coin is up
does not change;
• Distracting an agent causes that agent to not look at the box;

2

• Signaling an agent to look at the box causes such agent to look at the box;
• Announcing that the coin lies heads or tails up will make this a common knowledge among
the agents that are listening.

Suppose that the agents A and B are allied and A would like to know whether the coin lies heads
or tails up. She would also like to let the agent B know that she knows this fact. However, she
would like to keep this information secret from C. Observe that the last two sentences express goals
that are about agents’ knowledge about other agents’ knowledge. Intuitively, she could achieve her
goals by:

1. Distracting C from looking at the box;
2. Signaling B to look at the box if B is not looking at the box;
3. Opening the box; and
4. Peeking into the box. 2

This simple story presents a number of challenges for research in representing and reasoning
about actions and their effects in multi-agent domains. In particular:

• The domain contains several types of actions:

1. Actions that allow the agents to change the state of the world (e.g., opening the box);
2. Actions that change the knowledge of the agents (e.g, peeking into the box, announcing

heads/tails);
3. Actions that manipulate the beliefs of other agents (e.g., peeking while other agents are

looking); and
4. Actions that change the observability of agents with respect to awareness about future

actions (e.g., distract and signal actions before peeking into the box).

We observe that the third and fourth types of actions are not considered in single agent
systems.

• The reasoning process that allows agent A to verify that steps (1)-(4) will indeed achieve her
goal requires A’s ability to reason about the effects of actions on several aspects:

1. The state of the world—e.g., opening the box causes the box to become open;
2. The agents’ awareness of the environment and of other agents’ actions—e.g., distracting

or signaling an agent causes this agent not to look or to look at the box, respectively; and
3. The knowledge of other agents about her own knowledge—e.g., someone following her

actions would know what she knows.

While the first requirement is the same as for an agent in single-agent domains, the last two
are specific to multi-agent domains.

With respect to planning, the above specifics of multi-agent systems raise an interesting problem:

3

“How can one generate a plan for the agentA to achieve her goal, given the description
in Example 1?”

The above problem is an Epistemic Planning problem in a Multi-agent domain (EPM) (Bolander
and Andersen, 2011), which refers to the generation of plans for multiple agents to achieve goals
which can refer to the state of the world, the beliefs of agents, and/or the knowledge of agents.
EPM has recently attracted the attention of researchers from various communities, such as planning,
dynamic epistemic logic, and knowledge representation. The Dagstuhl seminars on the subject
(Agotnes et al., 2014; Baral et al., 2017) provided the impetus for the development of several
epistemic planners (Kominis and Geffner, 2015; Huang et al., 2017; Muise et al., 2015; Wan et al.,
2015; Liu and Liu, 2018; Le et al., 2018) and extensive studies of the theoretical foundations (e.g.,
decidability and computational complexity) of EPM (Aucher and Bolander, 2013; Bolander et al.,
2015). In spite of all these efforts, to the best of our knowledge, only two systems have been
proposed that address the complete range of issues mentioned in Example 1: the dynamic epistemic
modeling system called DEMO van Eijck (2004) and the recently proposed system described in
(Le et al., 2018; Fabiano et al., 2020). This is in stark contrast to the landscape of automated
planning for single-agent domains, where we can find several efficient automated planners capable
of generating plans consisting of hundreds of actions within seconds—especially building on recent
advances in search-based planning.

Among the main reasons for the lack of planning systems capable of dealing with the issues like
those shown in Example 1 are: (i) the lack of action-based formalisms that can address the above
mentioned issues and that can actually be orchestrated, and (ii) the fact that logical approaches to
reasoning about knowledge of agents in multi-agent domains are mostly model-theoretical, and
not amenable to an implementation in search-based planning systems. Indeed, both issues were
raised in the recent Dagstuhl seminar (Baral et al., 2017). The issue (i) is considered as one of
the main research topics in EPM, while (ii) is related to the practical and conceptual knowledge
representation challenges—discussed by Herzig2 at the second Dagstuhl seminar (Baral et al., 2017).
We will discuss these issues in more detail in the next sub-section.

1.2. Related Work
In terms of related work, multi-agent actions have been explored in Dynamic Epistemic Logics

(DEL) (e.g., Baltag and Moss (2004); Herzig et al. (2005); van Benthem (2007); van Benthem
et al. (2006); van Ditmarsch et al. (2007)). However, as discussed later in the paper, DEL does not
offer an intuitive view of how to orchestrate or execute a single multi-agent action. In addition, the
complex representation of multi-agent actions—similar to a Kripke structure—drastically increases
the number of possible multi-agent actions—thus, making it challenging to adopt a search-based
approach in developing multi-agent action sequences to reach a given goal. It can be observed that
several approaches to epistemic planning in multi-agent domains with focus on knowledge and
beliefs of agents did employ an extension of PDDL rather than using DEL (Kominis and Geffner,
2015; Huang et al., 2017; Muise et al., 2015; Wan et al., 2015; Liu and Liu, 2018).

2http://materials.dagstuhl.de/files/17/17231/17231.AndreasHerzig.Slides.pdf

4

The research in DEL has also not addressed some critical aspects of multi-agent search-based
planning, such as the determination of the initial state of a planning domain instance. Moreover,
research in DEL did not explore the link between the state of the world and the observability
encoded in multi-agent actions, and hence preventing the dynamic evolution of the observational
capabilities and awareness of the agents with respect to future actions. In some ways, the DEL
approach is similar to the formulation of belief updates (e.g., (Friedman and Halpern, 1999; Katsuno
and Mendelzon, 1992; del Val A. and Shoham, 1994)), and most of the differences and similarities
between belief updates and reasoning about actions carry over to the differences and similarities
between DEL and our formulation of RAC in multi-agent domains. We will elaborate on these
differences in a later section of the paper.

1.3. Contributions and Assumptions
Our goal in this paper is to develop a framework that allows reasoning about actions and their

effects in a multi-agent domain; the framework is expected to address the above-mentioned issues,
e.g., actions’ capability to modify agents’ knowledge and beliefs about other agents’ knowledge and
beliefs. To this end, we propose a high-level action language for representing and reasoning about
actions in multi-agent domains. The language provides the fundamental components of a planning
domain description language for multi-agent systems. The main contributions of the paper are:

• The action language mA∗, which allows the representation of different types of actions—such
as world-altering actions, announcement actions, and sensing actions—for formalizing multi-
agent domains; the language explicitly supports actions for the dynamic modification of the
awareness and observation capabilities of the agents;

• A transition function-based semantics for mA∗, that enables hypothetical reasoning and
planning in multi-agent domains. This, together with the notion of a finitary-S5 theories for
representing the initial state, introduced in (Son et al., 2014), provides a foundation for the
implementation of heuristic search-based planners for domains described in mA∗; and

• Several theoretical results relating the semantics of mA∗ to multi-agent actions characteriza-
tions using the notion of update models from DEL Baltag and Moss (2004).

In developing mA∗, we make several design decisions. The key decision is that actions in our
formalism can be effectively executed and the outcome can be effectively determined. This is not the
case, for example, in DEL (van Ditmarsch et al., 2007), where actions are complex graph structures,
similar to Kripke structures, possibly representing a multi-modal formula, and it is not clear if and
how such actions can be executed.3 We also assume that actions are deterministic, i.e., the result

3Update models in the literature typically come with an intuitive description of the real scenario describing who
executes the action, who observes (or partially observes) the action occurrence, and who is oblivious. Without such
information, an update model can be interpreted in many ways. As an example, simply looking at the right most update
model of Fig. 2 would not tell us whether A, B, or C executes the action. This is because this update model can also be
used to represent the scenario when B makes a truthful announcement that the coin lies heads up while A is attentive
and C is not attentive.

5

of the execution of a world altering action is unique. This assumption can be lifted in a relatively
simple manner—by generalizing the techniques for handling non-deterministic actions studied in
the context of single-agent domains.

Although we have mentioned both knowledge and beliefs, in this paper we will follow van
Ditmarsch et al. (2007); Baltag and Moss (2004) and focus only on formalizing the changes of
beliefs of agents after the execution of actions. Following the considerations by van Benthem (2007),
the epistemic operators used in this paper can be read as “to the best of my information.” Note that,
in a multi-agent system, there may be a need to distinguish between the knowledge and the beliefs
of an agent about the world. Let us consider Example 1 and let us denote with p the proposition

“nobody knows whether the coin lies heads or tails up.” Initially, the three agents know that p is
true. However, after agent A executes the sequence of actions (1)-(4), A will know that p is false.
Furthermore, B also knows that p is false, thanks to her awareness of A’s execution of the actions
of opening the box and looking into it. However, C, being unaware of the execution of the actions
performed by A, will still believe that p is true. If this were considered as a part of C’s knowledge,
then C would result in having false knowledge.

The investigation of the discrepancy between knowledge and beliefs has been an intense
research topic in dynamic epistemic logic and in reasoning about knowledge, which has lead to the
development of several modal logics (e.g., (Fagin et al., 1995; van Ditmarsch et al., 2007)). Since
our main aim is the development of an action language for hypothetical reasoning and planning, we
will be primarily concerned with the beliefs of agents. Some preliminary steps in this direction have
been explored in the context of the DEL framework (Herzig et al., 2005; Son et al., 2015). We leave
the development of an action-based formalism that takes into consideration the differences between
beliefs and knowledge as future work.

1.4. Paper Organization
The rest of the paper is organized as follows. Section 2 reviews the basic definitions and notation

of a modal logic with belief operators and the update model based approach to reasoning about
actions in multi-agent domains. This section also reviews the definition of finitary S5-theories
whose models are finite. It also includes a short discussion for the development of mA∗. Section 3
presents the syntax of mA∗. Section 4 explores the modeling of the semantics of mA∗ using the
update models approach; we define the transition function of mA∗ which maps pairs of actions and
states into states; the section also presents the entailment relation between mA∗ action theories and
queries along with relevant properties. Section 5 provides an analysis of mA∗ with respect to the
existing literature, including a comparison with DEL. Section 6 provide some concluding remarks
and directions for future work. For simplicity of presentation, the proofs of the main theorems are
placed in Appendix A.

2. Preliminaries

We begin with a review of the basic notions from the literature on formalizing knowledge and
reasoning about effects of actions in multi-agent systems. Section 2.1 presents the notion of Kripke
structures. Section 2.2 reviews the notion of update models developed by the dynamic epistemic
logic community for reasoning about effects of actions in multi-agent systems.

6

2.1. Belief Formulae and Kripke Structures
Let us consider an environment with a set AG of n agents. The real state of the world (or real

state, for brevity) is described by a set F of propositional variables, called fluents. We are concerned
with the beliefs of agents about the world and about the beliefs of other agents. For this purpose,
we adapt the logic of knowledge and the notations used in (Fagin et al., 1995; van Ditmarsch et al.,
2007). We associate to each agent i ∈ AG a modal operator Bi (to indicate a belief of agent i)
and represent the beliefs of an agent as belief formulae in a logic extended with these operators.
Formally, we define belief formulae using the BNF:

ϕ:: = p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | Biϕ | Eαϕ | Cαϕ

where p ∈ F is a fluent, i ∈ AG, and ∅ 6= α ⊆ AG. We often use a fluent formula to refer to a
belief formula which does not contain any occurrence of Bi, Eα, and Cα.

Formulae of the form Eαϕ and Cαϕ are referred to as group formulae. Whenever α = AG,
we simply write Eϕ and Cϕ to denote Eαϕ and Cαϕ, respectively. Let us denote with LAG the
language of the belief formulae over F and AG.

Intuitively, belief formulae are used to describe the beliefs of one agent concerning the state of
the world as well as about the beliefs of other agents. For example, the formula B1B2p expresses
the fact that “Agent 1 believes that agent 2 believes that p is true,” while B1f states that “Agent 1
believes that f is true.”

In what follows, we will simply talk about “formulae” instead of “belief formulae,” whenever
there is no risk of confusion. In order to define the semantics of such logic language, we need to
introduce the notion of a Kripke structure.

Definition 1 (Kripke Structure). A Kripke structure is a tuple 〈S, π,B1, . . . ,Bn〉, where

• S is a set of worlds,

• π : S 7→ 2F is a function that associates an interpretation of F to each element of S, and

• For 1 ≤ i ≤ n, Bi ⊆ S × S is a binary relation over S.

A pointed Kripke structure is a pair (M, s) where M = 〈S, π,B1, . . . ,Bn〉 is a Kripke structure and
s ∈ S. In a pointed Kripke structure (M, s), we refer to s as the real (or actual) world.

For the sake of readability, we use M [S], M [π], and M [i] to denote the components S, π, and
Bi of M , respectively. For u ∈ S, we write M [π](u) to denote the interpretation associated to u via
π and M [π](u)(ϕ) to denote the truth value of a fluent formula ϕ with respect to the interpretation
M [π](u). In keeping with the tradition of action languages, we will often refer to M [π](u) as the
set of fluent literals defined by4

{f | f ∈ F ,M [π](u)(f) = >} ∪ {¬f | f ∈ F ,M [π](u)(f) = ⊥}.

4For simplicity of the presentation, we often omit the negative literals as well.

7

Given a consistent and complete set of literals X , i.e., |{f,¬f} ∩ X| = 1 for every f ∈ F ,
we write M [π](u) = X to indicate that the interpretation M [π](u) is defined in such a way that
M [π](u) = X .

Intuitively, a Kripke structure describes the possible worlds envisioned by the agents—and the
presence of multiple worlds identifies uncertainty and the existence of different beliefs. The relation
(s1, s2) ∈ Bi denotes that the belief of agent i about the real state of the world is insufficient for her
to distinguish between the world described by s1 and the one described by s2. The world s in the
state (M, s) identifies the world in M [S] that corresponds to the actual world.

We will often view a Kripke structure M = 〈S, π,B1, . . . ,Bn〉 as a directed labeled graph,
whose set of nodes is S and whose set of edges contains (s, i, t)5 if and only if (s, t) ∈ Bi. (s, i, t)
is referred to as an edge coming out of (resp. into) the world s (resp. t).

Following van Ditmarsch et al. (2007), we will refer to a pointed Kripke structure (M, s) as a
state and often use these two terms interchangeably.

The satisfaction relation between belief formulae and a state is defined next.

Definition 2. Given a formula ϕ, a Kripke structure M = 〈S, π,B1, . . . ,Bn〉, and a world s ∈ S:

(i) (M, s) |= ϕ if p is a fluent and M [π](s) |= p;

(ii) (M, s) |= Biϕ if for each t such that (s, t) ∈ Bi, (M, t) |= ϕ;

(iii) (M, s) |= ¬ϕ if (M, s) 6|= ϕ;

(iv) (M, s) |= ϕ1 ∨ ϕ2 if (M, s) |= ϕ1 or (M, s) |= ϕ2;

(v) (M, s) |= ϕ1 ∧ ϕ2 if (M, s) |= ϕ1 and (M, s) |= ϕ2.

(vi) (M, s) |= Eαϕ if (M, s) |= Biϕ for every i ∈ α.

(vii) (M, s) |= Cαϕ if (M, s) |= Ek
αϕ for every k ≥ 0, where

– E0
αϕ = ϕ and

– Ek+1
α = Eα(Ek

αϕ).

For a Kripke structure M and a formula ϕ, M |= ϕ denotes the fact that (M, s) |= ϕ for each
s ∈M [S]. The notation |= ϕ indicates the fact that M |= ϕ for every Kripke structure M .

Example 2 (State). Let us consider a simplified version of Example 1 in which the agents are
concerned only with the status of the coin. The three agents A,B,C do not know whether the coin
has ‘heads’ or ‘tails’ up and this is a common belief. Let us assume that the coin is heads up. The
beliefs of the agents about the world and about the beliefs of other agents can be captured by the
state of Figure 1.

In the figure, a circle represents a world. The name of the world is written in the circle. Labeled
edges between worlds denote the belief relations of the structure. A double circle identifies the real

5(s, i, t) denotes the edge from node s to node t, labeled by i.

8

s0 s1A,B,C

A,B,C A,B,C

Figure 1: An example of a state

world. The interpretation of the world will be given whenever it is necessary. For example, we write
M [π](s0) = {head} to denote that head is true in the world s0 and anything else is false. Similarly,
M [π](s1) = {} to denote that every fluent is false in the world s1.

We will occasionally be interested in Kripke structures that satisfy certain conditions. In
particular, given a Kripke structure M = 〈S, π,B1, . . . ,Bn〉 we identify the following properties:

• K: for each agent i and formulae ϕ, ψ, we have that M |= (Biϕ ∧Bi(ϕ⇒ ψ))⇒ Biψ.

• T: for each agent i and formula ψ, we have that M |= Biψ ⇒ ψ.

• 4: for each agent i and formula ψ, we have that M |= Biψ ⇒ BiBiψ.

• 5: for each agent i and formula ψ, we have that M |= ¬Biψ ⇒ Bi¬Biψ.

• D: for each agent i we have that M |= ¬Bi ⊥.

A Kripke structure is said to be a T-Kripke (4-Kripke, K-Kripke, 5-Krikpe, D-Kripke, respectively)
structure if it satisfies property T (4, K, 5, D, respectively). A Kripke structure is said to be an
S5 structure if it satisfies the properties K, T, 4, and 5. The S5 properties have been often used to
capture the notion of knowledge. Consistency of a set of formulae is defined next.

Definition 3. A set of belief formulae X is said to be p-satisfiable (or p-consistent) for p ∈
{S5,K,T,4,5} if there exists a p-Kripke structureM and a world s ∈M [S] such that (M, s) |= ψ
for every ψ ∈ X . In this case, (M, s) is referred to as a p-model of X.

Finally, let us introduce a notion of equivalence between states.

Definition 4. A state (M, s) is equivalent to a state (M ′, s′) if (M, s) |= ϕ iff (M ′, s′) |= ϕ for
every formula ϕ ∈ LAG .

2.2. Update Models
The formalism of update models has been used to describe transformations of (pointed) Kripke

structures according to a predetermined transformation pattern. An update model is structured
similarly to a pointed Kripke structure and it describes how to transform a pointed Kripke structure
using an update operator defined in (Baltag and Moss, 2004; van Benthem et al., 2006).

Let us start with some preliminary definitions. An LAG-substitution is a set {p1 → ϕ1, . . . , pk →
ϕk}, where each pi is a distinct fluent in F and each ϕi ∈ LAG . SUBLAG denotes the set of all
LAG-substitutions.

9

Definition 5 (Update Model). Given a set AG of n agents, an update model Σ is a tuple
〈Σ, R1, . . . , Rn, pre, sub〉 where

(i) Σ is a set, whose elements are called events;

(ii) each Ri is a binary relation on Σ;

(iii) pre : Σ→ LAG is a function mapping each event e ∈ Σ to a formula in LAG; and

(iv) sub : Σ→ SUBLAG is a function mapping each event e ∈ Σ to a substitution in SUBLAG .

An update instance ω is a pair (Σ, e) where Σ is an update model 〈Σ, R1, . . . , Rn, pre, sub〉 and e,
referred to as a designated event, is a member of Σ.

Intuitively, an update model represents different views of an action occurrence which are
associated with the observability of agents. Each view is represented by an event in Σ. The
designated event is the one that agents who are aware of the action occurrence will observe. The
relation Ri describes agent i’s uncertainty on action execution—i.e., if (σ, τ) ∈ Ri and event σ
is performed, then agent i may believe that event τ is executed instead. pre defines the action
precondition and sub specifies the changes of fluent values after the execution of an action.

Definition 6 (Updates by an Update Model). Let M be a Kripke structure and Σ =
〈Σ, R1, . . . , Rn, pre, sub〉 be an update model. The update induced by Σ defines a Kripke structure
M ′ = M ⊗Σ, where:

(i) M ′[S] = {(s, τ) | s ∈M [S], τ ∈ Σ, (M, s) |= pre(τ)};

(ii) ((s, τ), (s′, τ ′)) ∈M ′[i] iff (s, τ), (s′, τ ′) ∈M ′[S], (s, s′) ∈M [i] and (τ, τ ′) ∈ Ri;

(iii) For all (s, τ) ∈M ′[S] and f ∈ F , M ′[π]((s, τ)) |= f iff f → ϕ ∈ sub(τ) and (M, s)|=ϕ.

The structure M ′ is obtained from the component-wise cross-product of the old structure M
and the update model Σ, by (i) removing pairs (s, τ) such that (M, s) does not satisfy the action
precondition (checking for satisfaction of action’s precondition), and (ii) removing links of the form
((s, τ), (s′, τ ′)) from the cross product of M [i] and Ri if (s, s′) 6∈ M [i] or (τ, τ ′) 6∈ Ri (ensuring
that each agent’s accessibility relation is updated according to the update model).

An update template is a pair (Σ,Γ), where Σ is an update model with the set of events Σ and
Γ ⊆ Σ. The update of a state (M, s) given an update template (Σ,Γ) is a set of states, denoted by
(M, s)⊗ (Σ,Γ), where

(M, s)⊗ (Σ,Γ) = {(M ⊗Σ, (s, τ)) | τ ∈ Γ, (M, s) |= pre(τ)}

Remark 1. In the following, we will often represent an update instance by a graph with rectangles,
double rectangles, and labeled links between rectangles representing events, designated events, and
the relation of agents, respectively, as in the graphical representation of a Kripke structure.

10

2.3. Finitary S5-Theories
A finitary S5-theory, introduced in (Son et al., 2014), is a collection of formulae which has

finitely many S5-models, up to a notion of equivalence (Definition 4). To define finitary S5-theories,
we need the following notion. Given a set of propositions F , a complete clause over F is a
disjunction of the form

∨
p∈F p

∗ where p∗ is either p or ¬p. We will consider formulae of the
following forms:

ϕ (1)
C(Biϕ) (2)
C(Biϕ ∨Bi¬ϕ) (3)
C(¬Biϕ ∧ ¬Bi¬ϕ) (4)

where ϕ is a fluent formula.

Definition 7. A theory T is said to be primitive finitary S5 if

• Each formula in T is of the form (1)-(4); and

• For each complete clause ϕ over F and each agent i, T contains either (i) C(Biϕ) or (ii)
C(Biϕ ∨Bi¬ϕ) or (iii) C(¬Biϕ ∧ ¬Bi¬ϕ).

A theory T is a finitary S5-theory if T |= H and H is a primitive finitary S5-theory. T is pure if
T contains only formulae of the form (1)-(4).

We say that a state (M, s) is canonical if for every pairs of worlds u, v ∈ M [S] and u 6= v,
M [π](u) 6≡M [π](v) holds. We have that

Theorem 1 (From (Son et al., 2014)). Every finitary S5-theory T has finitely many finite canonical
models, up to equivalence. If T is pure then these models are minimal and their structures are
identical up to the name of the points.

2.4. Why an Action Language?
As mentioned earlier, the Dagstuhl seminars (Agotnes et al., 2014; Baral et al., 2017) identified

one of the main research topics in EPM: the development of an adequate specification language for
EPM. This problem arises from the fact that EPM has been defined and investigated using a DEL
based approach, in which actions are represented by update models (Section 2.2). This representation
has been useful for the understanding of EPM and the study of its complexity, but comes with a
significant drawback—practical and conceptual knowledge representation challenges—discussed
by Herzig6 at the Dagstuhl seminar (Baral et al., 2017). Let us consider a slight modification of
Example 1, where the box is open, A has looked at the coin, while both B and C are distracted, and
A can announce whether the coin lies heads up or tails up. However, only agents who are attentive
(to A) could listen to what A says. Assume that A announces that the coin lies heads up. Intuitively,

6
http://materials.dagstuhl.de/files/17/17231/17231.AndreasHerzig.Slides.pdf

11

this action occurrence can have different effects on the beliefs of the other agents—depending on
the context and the specific features of each of them, e.g., whether the agent is attentive to A’s
announcement. As a result, we need a variety of update models to represent this primitive action.
Herzig refers to this problem as the action type vs. action token problem.

!

A,B,C

! "B,C

A A,B,C

pre: head pre: #

! "C

A,B A,B,C

pre: head pre: # pre: head

Figure 2: Update models for announcing “the coin lies heads up” by A in different situations

Fig. 2 shows three update models; they describe the occurrence of the announcement by A,
stating that the coin lies heads up, assuming that the coin indeed lies heads up in the real state of the
world. On the left is the update model when both B and C are attentive. The model in the middle
depicts the situation when both B nor C are not attentive. The update model on the right captures
the case of B being attentive and C being not attentive. In the figures, σ and τ are events and σ is a
designated event, head is a propositional variable denoting that the coin lies heads up.

Observe that these models are used only when the coin indeed lies heads up. The update models
corresponding to the situation where head is false (i.e., when A makes a false announcement) in the
real state of the world are different from those in the figure and are omitted. It is easy to see that the
number of update models needed to represent such simple announcement of “the coin lies heads
up” by A is exponential in the number of agents. This is certainly an undesirable consequence of
using update models and epistemic actions for representing and reasoning about effects of actions
in multi-agent domains. Therefore, any specification language for representing and reasoning about
the effects of actions in multi-agent domains should consider that the announcement of the coin
lies heads up by A is simply a primitive action. In our view, the update models should be derived
from the concrete state, which is a combination of the real state of the world and the state of beliefs
of the agents, and not specified directly. A more detailed discussion on this issue can be found in
Section 5, the related work section.

3. The language mA∗: Syntax

In this paper, we consider multi-agent domains in which the agents are truthful and no false
information may be announced or observed. Furthermore, the underlying assumptions guiding
the semantics of our language are the rationality principle and the idea that beliefs of an agent are
inertial. In other words, agents believe something because they have a reason to, and the beliefs of
an agent remain the same unless something causes them to change.

In this section and in the next section, we introduce the language mA∗ for describing actions
and their effects in multi-agent environment. The language is built over a signature 〈AG,F ,A〉,
where AG is a finite set of agent identifiers, F is a set of fluents, and A is a set of actions. Each
action in A is an action the agents in the domain are capable of performing.

12

Similar to any action language developed for single-agent environments, mA∗ consists of three
components which will be used in describing the actions and their effects, the initial state, and
the query language (see, e.g., (Gelfond and Lifschitz, 1998)). We will next present each of these
components. Before we do so, let us denote the multi-agent domain in Example 1 by D1. For this
domain, we have that AG = {A,B,C}. The set of fluents F for this domain consists of:

• tail: the coin lies tails up (head is often used in place of ¬tail);

• has key(x): agent x has the key of the box;

• opened: the box is open; and

• looking(x): agent x is looking at the box.

The set of actions for D1 consists of:

• open: an agent opens the box;

• peek: an agent peeks into the box;

• signal(y): an agent signals agent y (to look at the box);

• distract(y): an agent distracts agent y (so that y does not look at the box); and

• shout tail: an agent announces that the coin lies tails up.

where x, y ∈ {A,B,C}. We start with the description of actions and their effects.

3.1. Actions and effects
We envision three types of actions that an agent can perform: world-altering actions (also known

as ontic actions), sensing actions, and announcement actions. Intuitively,

• A world-altering action is used to explicitly modify certain properties of the world—e.g., the
agent A opens the box in Example 1, or the agent A distracts the agent C so that C does not
look at the box (also in Example 1);

• A sensing action is used by an agent to refine its beliefs about the world, by making direct
observations—e.g., an agent peeks into the box; the effect of the sensing action is to reduce
the amount of uncertainty of the agent;

• An announcement action is used by an agent to affect the beliefs of the agents receiving the
communication—we operate under the assumption that agents receiving an announcement
always believe what is being announced.

13

For the sake of simplicity, we assume that each action a ∈ A falls in exactly one of the three
categories.7 In a multi-agent system, we need to identify an action occurrence with the agents
who execute it. Given an action a ∈ A and a set of agents α ⊆ AG, we write a〈α〉 to denote the
joint-execution of a by the agents in α and call it an action instance. We will use AI to denote the
set of possible action instances A × 2AG . Elements of AI will be written in sans-serif font. For
simplicity of the presentation, we often use “an action” or “an action instance” interchangeably
when it is clear from the context which term is appropriate. Furthermore, when α is a singleton set,
{x}, we simplify 〈{x}〉 to 〈x〉.

In general, an action can be executed only under certain conditions, called its executability
conditions. For example, the statement “to open the box, an agent must have its key” in Example 1
describes the executability condition of the action of opening a box. The first type of statements in
mA∗ is used to describe the executability conditions of action occurrences and is of the following
form:

executable a if ψ (5)

where a ∈ AI and ψ is a belief formula. A statement of type (5) will be referred to as the
executability condition of the action occurrence a. ψ is referred as the precondition of a. For
simplicity of the presentation, we will assume that each action occurrence a is associated with
exactly one executability condition. When ψ = >, the statement will be omitted.

For an occurrence of a world-altering action a, such as the action of opening the box by some
agent, we have statements of the following type that express the change that may be caused by such
action:

a causes ` if ψ (6)

where ` is a fluent literal and ψ is a belief formula. Intuitively, if the real state of the world and the
beliefs match the condition described by ψ, then the real state of the world is affected by the change
that makes the literal ` true after the execution of a. When ψ = >, the part “ if ψ” will be omitted
from (6). We also use

a causes φ if ψ

where φ is a set of fluent literals as a shorthand for the set {a causes ` if ψ | ` ∈ φ}.
Sensing actions, such as the action of looking into the box, allow agents to learn about the value

of a fluent in the real state of the world (e.g., learn whether the coin lies heads or tails up). We use
statements of the following kind to represent effects of sensing action occurrences:

a determines ϕ (7)

where ϕ is a fluent formula and a ∈ AI is a sensing action. Statements of type (7) encode the
occurrence of a sensing action a which enables the agent(s) to learn the value of the fluent formula
ϕ. ϕ is referred to as a sensed fluent formula of a.

For actions such as the action of an agent telling another agent that the coin lies heads up, we
have statements of the following kind:

7It is easy to relax this condition, but it would make the presentation more tedious.

14

a announces ϕ (8)

where ϕ is a fluent formula and a ∈ AI. a is called an announcement action.
We will next illustrate the use of statements of the form (5)-(8) to represent the actions of the

domain D1.

Example 3. The actions of domain D1 can be specified by the following statements:

executable open〈x〉 if has key(x)
executable peek〈x〉 if opened, looking(x)
executable shout tail〈x〉 if Bx(tail), tail
executable signal(y)〈x〉 if looking(x),¬looking(y)
executable distract(y)〈x〉 if looking(x), looking(y)

open〈x〉 causes opened
signal(y)〈x〉 causes looking(y)
distract(y)〈x〉 causes ¬looking(y)
peek〈x〉 determines tail
shout tail〈x〉 announces tail

where x and y are different agents in {A,B,C}. The first five statements encode the executability
conditions of the five actions in the domain. The next three statements describe the effects of the
occurrence of three world-altering actions. peek〈x〉 is an example of an instance of a sensing action.
Finally, shout tail〈x〉 is an example of an instance of an announcement action.

3.2. Observability: observers, partial observers, and others
One of the key differences between single-agent and multi-agent domains lies in how the

execution of an action changes the beliefs of agents. This is because, in multi-agent domains, an
agent might be oblivious about the occurrence of an action or unable to observe the effects of an
action. For example, watching another agent open the box would allow the agent to know that the
box is open after the execution of the action; however, the agent would still believe that the box is
closed if she is not aware of the action occurrence. On the other hand, watching another agent peek
into the box does not help the observer in learning whether the coin lies heads or tails up; the only
thing she would learn is that the agent who is peeking into the box has knowledge of the status of
the coin.

mA∗ needs to have a component for representing the fact that not all the agents may be com-
pletely aware of the occurrence of actions being executed. Depending on the action and the current
situation, we can categorize agents in three classes:

• Full observers,

• Partial observers, and

• Oblivious (or others).

15

This categorization is dynamic—changes in the state of the world and/or the beliefs of agents may
change the observability of actions. In this paper, we will consider the possible observabilities of
agents for different action types as detailed in Table 1.

action type full observers partial observers oblivious/others
world-altering actions

√ √

sensing actions
√ √ √

announcement actions
√ √ √

Table 1: Action types and agent observability

The first row indicates that, for a world-altering action, an agent can either be a full observer,
i.e., completely aware of the occurrence of that action, or oblivious of the occurrence of the action.
The assumption here is that agents are fully knowledgeable of the outcomes of a world-changing
action (which makes partial observability a moot point). In the second case, the observability of the
agent is categorized as other. Note that we assume that the observer agents know about each others’
status and they are also aware of the fact that the other agents are oblivious. The oblivious agents
have no clue of anything. Notice also that in multi-agent domain, an agent, who executes an action,
might not be a full observer of the action occurrence.

For a sensing action, an agent can either be a full observer, i.e., it is aware of the occurrence of
that action and of its results, it can be a partial observer, gaining knowledge that the full observers
have performed a sensing action but without knowledge of the result of the observation, or it can
be oblivious of the occurrence of the action (i.e., other). Once again, we assume that the observer
agents know about each others’ status and they also know about the agents partially observing the
action and about the agents that are oblivious. The partially observing agents know about each
others’ status, and they also know about the observing agents and the agents that are oblivious. The
oblivious agents have no clue of anything. The behavior is analogous for the case of announcement
actions.

We observe that this classification is limited to individual agent’s observability of action occur-
rences. As agents are knowledgeable about the domains, they can reason about others’ observability
when an action occurs and manipulate others’ observability, thereby others’ knowledge about the
world and beliefs. As such, it is reasonable for an agent to use mA∗ for planning purpose, e.g., in
Example 1, A distracts C and signals B before opens the box. The classification, however, does not
consider situations in which an agent might have uncertainty about others’ observability. We discuss
this limitation in Section 5.1.2. A possible way to address this issue is to remove the assumption
that agents are oblivious of actions’ occurrences by default. This topic of research is interesting in
its own right and deserves a throughout investigation. We leave this as a future work.

Agents’ observability is meant to be dynamic and the dynamic behavior is described by agent
observability statements of the following forms:8

z observes a if ϕ (9)

8As discussed earlier, the “ if >” are omitted from the statements.

16

z aware of a if ψ (10)

where z ∈ AG, a ∈ AI , and ϕ and ψ are fluent formulae. (9) indicates that agent z is a full observer
of a if ϕ holds. (10) states that agent z is a partial observer of a if ψ holds. z, a, and ϕ (resp. ψ)
are referred to as the observed agent, the action instance, and the condition of (9) (resp. (10)). The
next example illustrates the use of the above statements in specifying the agents observability of the
domain D1.

Example 4 (Observability in D1). The actions of D1 are described in Example 3. The observability
of agents in D1 can be described by the set O1 of statements

x observes open〈x〉 x observes peek〈x〉
y observes open〈x〉 if looking(y) y aware of peek〈x〉 if looking(y)
z observes shout tail〈x〉 ∀z ∈ {A,B,C}
x observes distract(y)〈x〉 x observes signal(y)〈x〉
y observes distract(y)〈x〉 y observes signal(y)〈x〉
z observes distract(y)〈x〉 if looking(z)
z observes signal(y)〈x〉 if looking(z)

where x and y denote different agents in {A,B,C}. The above statements say that agent x is a
fully observant agent when open〈x〉, peek〈x〉, distract(y)〈x〉, signal(y)〈x〉, or shout tail〈x〉 is
executed; y is a fully observant agent if it is looking (at the box) when open〈x〉 is executed. y is a
partially observant agent if it is looking when peek〈x〉 is executed. An agent different from x and y
is oblivious if open〈x〉 or peek〈x〉 is executed.

It is obvious that an agent cannot be both partially observable and fully observable of the
execution of an action at the same time. For this reason, we will say that a statement of the form
(9) is in conflict with a statement of the form (10) if for the same occurrence a ∈ AI and z ∈ AG,
ϕ ∧ ψ is consistent.

Definition 8. An mA∗ domain is a collection of statements of the forms (5)-(10).

Similarly to action domains in the language A introduced by Gelfond and Lifschitz (1993), an
mA∗ domain could contain two statements specifying contradictory effects of an action occurrence
such as

a causes f if ϕ and a causes ¬f if ψ

where ϕ ∧ ψ is a consistent formula, i.e., there exists some pointed Kripke structure (M, s) such
that (M, s) |= ϕ ∧ ψ. Such a domain is not sensible and will be characterized as inconsistent.

Definition 9. An mA∗ domain D is consistent if for every pointed Kripke structure (M, s) and

• for every pair of two statements

a causes f if ϕ and a causes ¬f if ψ

in D, (M, s) 6|= ϕ ∧ ψ; and

17

• for every pair of two statements

z observes a if ϕ and z aware of a if ψ

in D, (M, s) 6|= ϕ ∧ ψ.

From now on, whenever we say an mA∗ domain D, we will assume that D is consistent.

3.3. Initial State
A domain specification encodes the actions, and their effects, and the observability of agents in

each situation. The initial state, that encodes both the initial state of the world and the initial beliefs
of the agents, is specified in mA∗ using initial statements of the following form:

initially ϕ (11)

where ϕ is a belief formula. Intuitively, this statement says that ϕ is true in the initial state. We
will later discuss restrictions on the formula ϕ to ensure the computability of the Kripke structures
describing the initial state.

Example 5 (Representing Initial State of D1). Let us reconsider Example 1. The initial state of D1

can be expressed by the following statements:

initially C(has key(A))
initially C(¬has key(B))
initially C(¬has key(C))
initially C(¬opened)
initially C(¬Bxhead ∧ ¬Bx¬head) for x ∈ {A,B,C}
initially C(looking(x)) for x ∈ {A,B,C}

These statements indicate that everyone knows that A has the key and B and C do not have the key,
the box is closed, no one knows whether the coin lies heads or tails up, and everyone is looking at
the box.

The notion of an action theory in mA∗ is defined next.

Definition 10 (Action Theory). An mA∗-action theory is a pair (I,D) where D is an mA∗ domain
and I is a set of statements of the form (11).

In Section 4, we will define the notion of entailment between action theories and queries, in a
manner similar to the notion of entailment defined for action languages in single-agent domains
(e.g., (Gelfond and Lifschitz, 1998)). This requires the following definition.

Definition 11 (Initial State/Belief-State). Let (I,D) be an action theory. An initial state of (I,D)
is a state (M, s) such that for every statement

initially ϕ

in I , (M, s) |= ϕ.
(M, s) is an initial S5-state if it is an initial state and M is a S5 Kripke structure.
The initial belief-state (or initial b-state) of (I,D) is the collection of all initial states of (I,D).
The initial S5-belief state of (I,D) is the collection of all initial S5-states of (I,D).

18

By definition, it is easy to see that, theoretically, there could be infinitely many initial states
for an arbitrary mA∗ theory. For example, given a state (M, s) and a set of formulae Σ such that
(M, s) |= Σ, a new state (M ′, s) that also satisfies Σ can be constructed from M by simply stating
M ′[S] = M [S] ∪ {s′}, where s′ 6∈ M [S], and keeping everything else unchanged. As such, it is
important to identify sensible classes of action theories whose initial belief states are finite, up to a
notion of equivalence (Definition 4). Fortunately, the result on finitary S5 theories9 (Definition 7)
allows us to identify a large class of action theories satisfying this property. We call them definite
action theories and define them as follows.

Definition 12 (Definite Action Theory). An action theory (I,D) is said to be definite if the theory
{ϕ | initially ϕ belongs to I} is a finitary-S5 theory.

Observe that Theorem 1 indicates that for definite action theories, the initial belief state is finite.
An algorithm for computing the initial belief state is given in (Son et al., 2014). This, together with
the definition of the transition function of mA∗ domains in the next section, allows the implementa-
tion of search-based progression epistemic planning systems. A preliminary development can be
found in (Le et al., 2018).

It is worth pointing out that Definition 11 does not impose any condition on the initial state
of action theories. It merely characterizes a subgroup of action theories (S5 action theories), for
which some interesting properties can be proved. We would also like to reiterate that most of
our discussion in this paper focuses on beliefs rather than knowledge. Additional steps need to
be taken for answering questions related to knowledge of agents after the execution of an action
sequence. For example, the ability of maintaining the KD45 properties of the resulting pointed
Kripke structures after the execution of an action will be important. Preliminary investigation in
this direction was presented by Son et al. (2015).

4. Update Model Based Semantics for mA∗ Domains

An mA∗ domain D specifies a transition system, whose nodes are states. This transition system
will be described by a transition function ΦD, which maps pairs of action occurrences and states to
states. For simplicity of the presentation, we assume that only one action occurrence happens at
each point in time—it is relatively simple to extend it to cases where concurrent actions are present,
and this is left as future work. As we have mentioned in Section 2, we will use pointed Kripke
structures to represent states in mA∗ action theories. A pointed Kripke structure encodes three
components:

• The actual world;

• The state of beliefs of each agent about the real state of the world; and

• The state of beliefs of each agent about the beliefs of other agents.

9To keep the paper at a reasonable length, we do not discuss the details of finitary S5 theories. Interested readers are
referred to (Son et al., 2014) for details and proof of Theorem 1.

19

These components are affected by the execution of actions. Observe that the notion of a state in
mA∗ action theories is more complex than the notion of state used in single-agent domains (i.e., a
complete set of fluent literals).

Let S be the set of all possible pointed Kripke structures over L(F ,AG), the transition function
ΦD maps pairs of action instances and states into sets of states, i.e.,

ΦD : AI × S −→ 2S (12)

will be defined for each action type separately and in two steps. First, we define an update model
representing the occurrence of a ∈ AI in a state (M, s). Second, we use the update model and
update template defined in step one to define ΦD. We start by defining the notion of a frame of
reference in order to define the function ΦD.

4.1. Actions Visibility and Frames of Reference
Given a state (M, s) and an action occurrence a, let us define

FD(a,M, s) = {x ∈ AG | [x observes a if ϕ] ∈ D such that (M, s) |= ϕ}
PD(a,M, s) = {x ∈ AG | [x aware of a if ϕ] ∈ D such that (M, s) |= ϕ}
OD(a,M, s) = AG \ (FD(a,M, s) ∪ PD(a,M, s))

We will refer to the tuple (FD(a,M, s),PD(a,M, s),OD(a,M, s)) as the frame of reference for
the execution of a in (M, s). Intuitively, FD(a,M, s) (resp. PD(a,M, s) and OD(a,M, s)) are the
agents that are fully observant (resp. partially observant and oblivious/other) of the execution of a
in the state (M, s). As we assume that for each pair of an action occurrence a and a state (M, s),
the sets (FD(a,M, s), FD(a,M, s), and PD(a,M, s) are pairwise disjoint, the domain specification
D and the state (M, s) determine a unique frame of reference for each action occurrence.

The introduction of frames of reference allows us to elegantly model several types of actions
that are aimed at modifying the frame of reference (referred to as reference setting actions). Some
possibilities are illustrated in the following examples.

Example 6 (Reference Setting Actions). Example 4 shows two reference setting actions signal(y)
and distract(y) with instances of the form signal(y)〈x〉 and distract(y)〈x〉 because they change the
truth value of looking(y) to true and false, respectively, which decides whether or not the agent y
is aware (or partially aware) of the occurrence of an action instance open〈x〉 (or peek〈x〉).

The action instance signal(y)〈x〉 allows agent x to promote agent y into a higher level of
observation for the effect of peek〈x〉. On the other hand, the action instance distract(y)〈x〉 allows
agent x to demote agent y into a lower level of observation. The net effect of executing these actions
is a change of frame.

Let us consider signal(y)〈x〉 and a state (M, s). Furthermore, let us assume that (M ′, s′) is
a state resulting from the execution of signal(y)〈x〉 in (M, s). The frames of reference for the
execution of the action instance a = peek〈x〉 in these two states are related to each other by the
following equations:

FD1(a,M
′, s′) = FD1(a,M, s)

PD1(a,M
′, s′) = PD1(a,M, s) ∪ {y}

OD1(a,M
′, s′) = OD1(a,M, s) \ {y}

20

Intuitively, after the execution of signal(y)〈x〉, looking(y) becomes true because of the statement

signal(y)〈x〉 causes looking(y)

in D1. By definition, the statement

y aware of peek〈x〉 if looking(y)

indicates that y is partially observant.
Similar argument shows that distract(y)〈x〉 demotes y to the lowest level of visibility, i.e., it

will cause agent y to become oblivious of the successive peek〈x〉 action. Let us assume that the
execution of a in (M, s) resulted in (M ′, s′). Then, the frames of reference for the execution of the
action instance a = peek〈x〉 in these two states are related to each other by the following equations:

FD1(a,M
′, s′) = FD1(a,M, s) \ {y}

PD1(a,M
′, s′) = PD1(a,M, s) \ {y}

OD1(a,M
′, s′) = OD1(a,M, s) ∪ {y}

4.2. Update Model for Action Occurrences
Definition 13 (Update Model/Template for World-Altering Actions). Given a world-altering action
instance a with the precondition ψ and a frame of reference ρ = (F, ∅, O), the update model for a
and ρ, denoted by ω(a, ρ), is defined by 〈Σ, R1, . . . , Rn, pre, sub〉 where

◦ Σ = {σ, ε};

◦ Ri = {(σ, σ), (ε, ε)} for i ∈ F and Ri = {(σ, ε), (ε, ε)} for i ∈ O;

◦ pre(σ) = ψ and pre(ε) = >; and

◦ sub(ε) = ∅ and sub(σ) = {p→ Ψ+(p, a) ∨ (p ∧ ¬Ψ−(p, a)) | p ∈ F}, where

Ψ+(p, a) =
∨
{ϕ | [a causes p if ϕ] ∈ D}

and
Ψ−(p, a) =

∨
{ϕ | [a causes ¬p if ϕ] ∈ D}.

The update template for the occurrence of a and the frame of reference ρ is (ω(a, ρ), {σ}).

Observe that the update model of the world-altering action occurrence has two events. Each
event is associated to a group of agents in the frame of reference. The links in the update model
for each group of agents reflect the state of beliefs each group would have after the execution of
the action. For example, fully observant agents (in F) will have no uncertainty. The next example
illustrates this definition.

21

s0 s1A,B,C

A,B,C A,B,C

! "C

A,B A,B,C

pre: has_key(A) pre: #

u0 u1A,B

A,B A,B

u2 u3A,B,C

A,B,C A,B,C

C
C C

C

Figure 3: Update template (ω(open〈A〉, ({A,B}, ∅, {C})), {σ}) and its application

Example 7. Going back to our original example, consider the occurrence of the action instance
open〈A〉 assuming that everyone is aware thatC is not looking at the box whileB andA are. Figure
3 (left) depicts the state (M, s0) where M [π](s0) = {looking(A), looking(B), has key(A)} and
M [π](s1) = {looking(A), looking(B), has key(A), head}. The frame of reference for open〈A〉
in this situation is ({A,B}, ∅, {C}). The corresponding update template for open〈A〉 and the frame
of reference ({A,B}, ∅, {C}) is given in Figure 3 (middle).

The figure on the right in Figure 3 shows (M ′, u0), the result of the application of the update
template to the state (M, s0) where
u0 = (s0, σ)10 with M ′[π](u0) = {looking(A), looking(B), has key(A), opened}
u1 = (s1, σ) with M ′[π](u1) = {looking(A), looking(B), head, has key(A), opened}
u2 = (s0, ε) with M ′[π](u2) = {looking(A), looking(B), has key(A)}
u3 = (s1, ε) with M ′[π](u3) = {looking(A), looking(B), head, has key(A)}.

In the next definition, we provide the update template for a sensing or announcement action
occurrence given a frame of reference. For simplicity of presentation, we will assume that the set of
sensed formulae of the action is a singleton.

Definition 14 (Update Model/Template for Sensing/Announcement Actions). Let a be a sensing
action instance that senses ϕ or an announcement action instance that announces ϕ with the
precondition ψ and ρ = (F, P,O) be a frame of reference. The update model for a and ρ, ω(a, ρ),
is defined by 〈Σ, R1, . . . , Rn, pre, sub〉 where:

◦ Σ = {σ, τ, ε};

◦ Ri is given by

Ri =

{(σ, σ), (τ, τ), (ε, ε)} if i ∈ F
{(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)} if i ∈ P
{(σ, ε), (τ, ε), (ε, ε)} if i ∈ O

10This is to say that u0 denotes the world (s0, σ) as in Definition 6.

22

◦ The preconditions pre are defined by

pre(x) =

ψ ∧ ϕ if x = σ
ψ ∧ ¬ϕ if x = τ
> if x = ε

◦ sub(x) = ∅ for each x ∈ Σ.

The update template for the sensing action occurrence a and the frame of reference ρ is
(ω(a, ρ), {σ, τ}) while the update template for the announcement action occurrence a and the
frame of reference ρ is (ω(a, ρ), {σ})

Observe that an update model of a sensing or announcement action occurrence has three events.
As we can see, an update model for an announcement action and a frame of reference is structure-
wise identical to the update model for a sensing action and a frame of reference. The main distinction
lies in the set of designated events in the update template for each type of actions. There is only one
single designated event for announcement actions while there are two for sensing actions.

Example 8. Let us consider the occurrence of peek〈A〉 in the state described in Figure 4 (left). The
frame of reference for this occurrence of peek〈A〉 is ({A}, {B}, {C}). The corresponding update
template is given in Figure 4 (middle).

s0 s1A,B,C

A,B,C A,B,C !
"

C

A,B

A,B,Cpre: looking(A) ∧
opened ∧ ¬head

#

A,B

pre: looking(A) ∧
opened ∧ head

C
B

z0 z1

A,B A,B

z2 z3A,B,C

A,B,C A,B,C

C

C C

C

B

pre: $

Figure 4: Update template (ω(peek〈A〉, ({A}, {B}, {C})), {σ, τ}) and its application

In the above figure, z0 = (s0, σ), z1 = (s1, τ), z2 = (s0, ε), and z3 = (s1, ε) and the interpre-
tation of each world zi is the same as the interpretation of the world sj where zi = (sj, x) for
x ∈ {σ, τ, ε}.

The next example illustrates the update template of announcement actions.

Example 9. Let us assume that A and B have agreed to a scheme of informing each other if the
coin lies heads up by raising a hand. B can only observe A if B is looking at the box (or looking at
A). C is completely ignorant about the meaning of A’s raising her hand. This can be modeled by

23

the following statements:11

executable raising hand〈A〉 if BA(head), head
raising hand〈A〉 announces head
A observes raising hand〈A〉 if >
B observes raising hand〈A〉 if looking(B)

If A knows the coin lies heads up and raises her hand, B will be aware that the coin lies heads up
and C is completely ignorant about this.

Let us consider the action occurrence raising hand〈A〉 and the state in which B is looking at the
box and thus both A and B are aware of it. We have that the frame of reference is ({A,B}, ∅, {C})
and thus the update template for the occurrence of raising hand〈A〉 is shown in Figure 5.

!
"

C

A,B

A,B,C
pre: head

#

A,B

pre: ¬head

C pre: $

Figure 5: Update template for the raising hand〈A〉 action and ρ = ({A,B}, ∅, {C})

4.3. Defining ΦD

The update models representing action occurrences can be used in formalizing ΦD similar to the
proposals in Baral et al. (2012, 2013). However, a main issue of the earlier definitions is that the
early definition does not deal with false/incorrect beliefs. Let us address this with a novel solution,
inspired by the suggestion in (van Eijck, 2017). Let us start by introducing some additional notation.
For a pointed Kripke model (M, s), an agent i ∈ AG, and a formula ϕ, we say that i has false belief
about ϕ in (M, s) if

(M, s) |= ϕ and (M, s) |= Bi¬ϕ.

For a set of agents S, a pointed Kripke model (M, s), and a formula ϕ, such that (M, s) |= ϕ, let
M [S, ϕ] be obtained from M by replacing M [i] with M [S, ϕ][i] where

• M [S, ϕ][i] = (M [i] \ M [i]s) ∪ {(s, s)} for i ∈ S and (M, s) |= Bi¬ϕ where M [i]s =
{(s, u) | (s, u) ∈M [i]}; and

• M [S, ϕ][i] = M [i] for other agents, i.e., i ∈ AG \ S or i ∈ S and (M, s) 6|= Bi¬ϕ.

11For simplicity, we ignore the effect that A’s hand is raised when A raises her hand.

24

This process aims at correcting beliefs of agents with false beliefs. Intuitively, the links in M [i]s

create the false belief of agent i. Therefore, to correct the false believe of i, we should replace them
with the single link (s, s). Let us now define ΦD.

Definition 15. Let D be a mA∗ domain and a be an action instance. Let ψ be precondition of a,
(M, s) a state, and α a set of agents. Let us consider a ∈ AI. We say a is executable in (M, s) if
(M, s) |= ψ. The result of executing a in (M, s) is a set of states, denoted by ΦD(a, (M, s)) and
defined as follows.

• If a is not executable in (M, s) then ΦD(a, (M, s)) = ∅

• If a is executable in (M, s) and (E , Ed) is the representation of the occurrence of a in (M, s)
then

– ΦD(a, (M, s)) = (M, s)⊗(E , Ed) if a is a world-altering action instance;

– ΦD(a, (M, s)) = M1[FD(a,M1, s), ϕ] ⊗ (E , Ed) where M1 = M [PD(a,M, s), ψ] if a
is a sensing action instance that senses ϕ and (M, s) |= ϕ;

– ΦD(a, (M, s)) = M1[FD(a,M1, s),¬ϕ]⊗ (E , Ed) where M1 = M [PD(a,M, s), ψ] if a
is a sensing action instance that senses ϕ and (M, s) |= ¬ϕ; and

– ΦD(a, (M, s)) = M1[FD(a,M1, s), ϕ] ⊗ (E , Ed) where M1 = M [PD(a,M, s), ψ] if a
is an announcement action instance that announces ϕ and (M, s) |= ϕ.

Finally, for a set of statesM,

• if a is not executable in some (M, s) ∈M then ΦD(a,M) = ∅;

• if a is executable in every (M, s) ∈M then

ΦD(a,M) =
⋃

(M,s)∈M

ΦD(a, (M, s)).

Observe that the definition of ΦD for an announcement or a sensing action occurrence corrects
the false beliefs of the full and partial observers12. M [PD(a,M, s), ψ] corrects the false beliefs about
the action precondition of partially observers and M1[FD(a,M1, s), ϕ] corrects the false beliefs
about the sensed (or announced) formula.

4.4. Properties of ΦD

While the syntax and semantics of mA∗ represent contributions on their own, of particular
interest is the fact that mA∗ satisfies certain useful properties—specifically its ability to correctly
capture certain intuitions concerning the effects of various types of actions. In particular,
• If an agent is fully observant of the execution of an action instance then her beliefs will be

updated with the effects of such action occurrence;

12We thank the anonymous reviewer for suggesting the improvement of this definition.

25

• An agent who is only partially observant of the action occurrence will believe that the agents
who are fully observant of the action occurrence are certain about the action’s effects; and
• An agent who is oblivious of the action occurrence will also be ignorant about its effects.

We will next present several theorems discussing these properties. To simplify the presentation, we
will use the following notations throughout the theorems in this subsection.

• D denotes a consistent mA∗ domain;
• (M, s) denotes a state; and
• a is an action instance, whose precondition is given by the statement

executable a if ψ

in D, and a is executable in (M, s).
• ρ = (F, P,O) is the frame of reference of the execution of a in (M, s) where F =
FD(a,M, s), P = PD(a,M, s), and O = OD(a,M, s).

We begin with a theorem about the occurrence of the instance of an world-altering action.

Theorem 2. Assume that a is an world-altering action instance. It holds that:

1. for every agent x ∈ FD(a,M, s) and [a causes ` if ϕ] belongs to D, if (M, s) |= Bxϕ then
ΦD(a, (M, s)) |= Bx`;

2. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=
Byη; and

3. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η, if
(M, s) |= BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. See Appendix A. 2

In the above theorem, the first property discusses the changes in the beliefs of agents who are
fully observant of the occurrence of an world-altering action instance. The second property shows
that oblivious agents are still in the “old state,” i.e., they believe nothing has happened. The third
property indicates that fully observant agents are also aware that the beliefs of all oblivious agents
have not changed. This is particular useful in situations where an agent would like to create false
beliefs about a fluent p for other agents: she only needs to secretly execute an action that changes
the truth value of p.

Theorem 3. Let us assume that a is a sensing action instance and D contains the statement
a determines ϕ. It holds that:

1. if (M, s) |= ϕ then ΦD(a, (M, s)) |= CFD(a,M,s)ϕ;
2. if (M, s) |= ¬ϕ then ΦD(a, (M, s)) |= CFD(a,M,s)¬ϕ;
3. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ);
4. ΦD(a, (M, s)) |= CFD(a,M,s)(CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ));
5. for every agent y ∈ OD(a,M, s) and formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |= Byη;

26

6. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a formula η if (M, s) |=
BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. See Appendix A. 2

The first and second properties of the above theorem indicate that agents who are fully aware of
the occurrence of the sensing action instance will be able to update their beliefs with the truth value
in the real state of the world of the sensed fluent, thereby correcting any false beliefs that they might
have before the execution of the action. The third property shows that agents who are partially
aware of the action execution will know that agents who are fully aware of the action execution
will have the correct beliefs about the sensed fluents. The fourth property indicates that fully aware
agents know that partially observed agents would know that they have the correct beliefs about the
sensed fluent. The fifth and sixth properties are about oblivious agents’ beliefs.

Theorem 4. Assume that a is an announcement action instance and D contains the statement
a announces ϕ. If (M, s) |= ϕ then it holds that

1. ΦD(a, (M, s)) |= CFD(a,M,s)ϕ;
2. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ);
3. ΦD(a, (M, s)) |= CFD(a,M,s)(CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ));
4. for every agent y ∈ OD(a,M, s) and a formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |= Byη;

and
5. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a formula η, if (M, s) |=

BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. The proof of this theorem is similar to the proof of Theorem 3 and is omitted for brevity.2

Similarly to Theorem 3, the first property of the above theorem indicates that a truthful an-
nouncement could help agents who are fully aware of the action instance occurrence correct their
false beliefs. They also know that partially aware agents will know that they have the correct beliefs.
Likewise, partially aware agents will only know that fully aware agents know the truth value of the
announced formula but they might not have the real value of this formula themselves. Furthermore,
as in other types of actions, the beliefs of oblivious agents do not change.

4.5. Entailment in mA∗ Action Theories
We are now ready to define the notion of entailment in mA∗ action theories. It will be defined

between mA∗ action theories and queries of the following form:

ϕ after δ (13)

where ϕ is a formula and δ is a sequence of action instances a1; . . . ; an (n ≥ 0); we will refer to
such type of sequences of action instances as plans. Let us observe that the entailment can be easily
extended to consider more general forms of conditional plans, that include conditional statements
(e.g., if-then) or loops (e.g., while)—as discussed in e.g. (Levesque et al., 1997; Son and Baral,
2001). We leave these relatively simple extensions for future work.

27

The description of an evolution of a system will deal with belief state (Definition 11). For a
belief state B and an action instance a, we say that a is executable in B if ΦD(a, (M, s)) 6= ∅ for
every state (M, s) in B. With a slight abuse of notation, we define

ΦD(a, B) =

{⊥} if ΦD(a, (M, s)) = ∅ in some state (M, s) in B

or B = {⊥}⋃
(M,s)∈B ΦD(a, (M, s)) otherwise

(14)

where {⊥} denotes that the execution of a in B fails. Note that we assume that no action instance is
executable in ⊥.

Let δ be a plan and B be a belief state. The set of belief states resulting from the execution of δ
in B, denoted by Φ∗D(δ, B), is defined as follows:

• If δ is the empty plan [] then Φ∗D([], B) = B;

• If δ is a plan of the form a; δ′ (with a ∈ AI), then Φ∗D(a; δ′, B) = Φ∗D(δ′,ΦD(a, B)).

Intuitively, the execution of δ in B can go through several paths, each path might finish in a set
of states. It is easy to see that if one of the states reached on a path during the execution of δ is ⊥
(the failed state) then the final result of the execution of δ in B is {⊥}. Φ∗D(δ, B) = {⊥} indicates
that the execution of δ in B fails.

We are now ready to define the notion of entailment.

Definition 16 (Entailment). An action theory (I,D) entails the query

ϕ after δ

denoted by (I,D) |= ϕ after δ if

1. Φ∗D(δ, I0) 6= {⊥} and
2. (M, s) |= ϕ for each (M, s) ∈ Φ∗D(δ, I0)

where I0 is the initial belief state of (I,D).
We say that (I,D) S5-entails the query ϕ after δ, denoted by (I,D) |=S5 ϕ after δ, if the two

conditions (1)–(2) are satisfied with respect to I0 being the initial S5-belief state of (I,D).

4.6. Using mA∗: An Illustration
The next example illustrates these definitions.

Example 10. Let D1 be the domain specification given in Examples 3 and 4 and I1 be the set of
initial statements given in Example 5. Furthermore, let δA be the sequence of actions:

δA = distract(C)〈A〉; open〈A〉; peek〈A〉.

We can show that

(I1, D1) |=S5 (BAhead ∨BA¬head) ∧BA(BB(BAhead ∨BA¬head)) after δA
(I1, D1) |=S5 BB(BAhead ∨BA¬head) ∧ ¬BBhead ∧ ¬BB¬head after δA
(I1, D1) |=S5 BC [

∧
i∈{A,B,C}(¬Bihead ∧ ¬Bi¬head)] after δA

28

It can be shown that (I1, D1) is indeed a definite action theory and any S5-initial state of
(I1, D1) is equivalent to either (M0, s0) or (M0, s1) where (M0, s0) is drawn in Figure 6 (left) and
M0[π](s0) = {has key(A), looking(A), looking(B), looking(C)} and
M0[π](s1) = {has key(A), looking(A), looking(B), looking(C), head} .

The execution of distract(C)〈A〉 in (M0, s0) results in a new state (M1, u0) and is shown in
Figure 6 (right). The update model corresponds to the occurrence of distract(C)〈A〉 in (M0, s0) is
shown in the middle of Figure 6, and the interpretations associated with the worlds in M1 are:

u0 = (s0, σ) with M1[π](u0) = {looking(A), looking(B), has key(A)}
u1 = (s1, σ) with M1[π](u1) = {looking(A), looking(B), head, has key(A)}.

s0 s1A,B,C

A,B,C A,B,C

u0 u1A,B,C

A,B,C A,B,C

!

A,B,C

pre: looking(A) ∧
looking(C)

(M0,s0) "(distract(C)⟨A⟩,({A,B,C},∅,∅)) (M1,u0)

Figure 6: Execution of distract(C)〈A〉 in (M0, s0) results in (M1, u0)

The execution of open〈A〉 in (M1, u0) (left, Figure 7) results in a new state (M2, v0) (right,
Figure 7). The update model corresponds to the occurrence of open〈A〉 in (M1, u0) is shown in the
middle of Figure 7. The interpretations associated to each world of (M2, v0) are as follows:

v0 = (u0, σ) with M2[π](v0) = {looking(A), looking(B), has key(A), opened}
v1 = (u1, σ) with M2[π](v1) = {looking(A), looking(B), head, has key(A), opened}
v2 = (u0, ε) with M2[π](v2) = {looking(A), looking(B), has key(A)}
v3 = (u1, ε) with M2[π](v3) = {looking(A), looking(B), head, has key(A)}.

u0 u1A,B,C

A,B,C A,B,C

! "C

A,B A,B,C

pre: has_key(A) pre: #

v0 v1A,B

A,B A,B

v2 v3A,B,C

A,B,C
A,B,C

C C C

C

(M1,u0) $(open⟨A⟩,({A,B},∅,{C})) (M2,v0)

Figure 7: Execution of open〈A〉 in (M1, u0) results in (M2, v0)

Finally, the execution of peek〈A〉 in (M2, v0) results in (M3, z0) (Figure 8) where z0 = (v0, σ),
z1 = (v1, τ), z2 = (v0, ε), z3 = (v1, ε), z4 = (v2, ε), and z5 = (v3, ε) with M3[π](z0) = M2[π](v0),
M3[π](z1) = M2[π](v1), M3[π](z2) = M2[π](v0), M3[π](z3) = M2[π](v1), M3[π](z4) =
M2[π](v2), and M3[π](z5) = M2[π](v3).

It is easy to see that the execution of δA in (M0, s0) results in only one state (M3, z0). We can

29

!
"

C

A,B

A,B,Cpre: looking(A) ∧
opened ∧ ¬head

#

A,B

pre: looking(A) ∧
opened ∧ head

C
B

(M2,v0) $(peek⟨A⟩,({A},{B},{C})) (M3,z0)

v0 v1A,B

A,B A,B

v2 v3A,B,C

A,B,C
A,B,C

C C C

C

z0

z1

A,B

A,B

B

z2 z3A,B

A,B A,B

z4 z5A,B,C

A,B,C A,B,C

C C C

C

C

C

C

C

Figure 8: Execution of peek〈A〉 in (M2, v0) results in (M3, z0)

verify that

(M3, z0) |= BA¬head ∧BA(BB(BAhead ∨BA¬head))
(M3, z0) |= BB(BAhead ∨BA¬head) ∧ (¬BBhead ∧ ¬BB¬head)
(M3, z0) |= BC [

∧
i∈{A,B,C}(¬Bihead ∧ ¬Bi¬head)]

(15)

We conclude the example with a note that the execution of δA in (M0, s1) results in a state
(V3, z1) whose Krippe structures V3 is identical to M3 and the real state of the world is z1 instead of
z0 (Figure 9).

s0 s1A,B,C

A,B,C A,B,C

u0 u1A,B,C

A,B,C A,B,C

distract(C)⟨A⟩

v0 v1A,B

A,B A,B

v2 v3A,B,C

A,B,C
A,B,C

C C C

C

z0

z1

A,B

A,B

B

z2 z3A,B

A,B A,B

z4 z5A,B,C

A,B,C A,B,C

C C C

C

C

C

C

C

(V1,u1) (V2,v2) (V3,z1)

open⟨A⟩

peek⟨A⟩

Figure 9: Execution of δA in (M0, s1) results in (V3, z1)

We can also verify that the following holds:

(V3, z2) |= BAhead ∧BA(BB(BAhead ∨BA¬head))
(V3, z2) |= BB(BAhead ∨BA¬head) ∧ (¬BBhead ∧ ¬BB¬head)
(V3, z2) |= BC [

∧
i∈{A,B,C}(¬Bihead ∧ ¬Bi¬head)]

(16)

(15) and (16) prove the conclusions of the example.

4.7. Some Considerations in Using mA∗

The previous example shows that mA∗ is adequate for the specifying and reasoning about the
actions in the domain in the introductory example. Furthermore, it has been demonstrated that the
language can be used in specifying and reasoning about the effects of typical actions in multi-agent

30

setting (see, Appendix B in an earlier version of this paper https://arxiv.org/pdf/1511.
01960v2.pdf). The use of mA∗, similar to the use of action languages in single-agent setting
(e.g., A, B, C, etc.), requires some considerations. A slight change in the action or the observability
specifications statements can easily lead to different results. We discuss below a variant of the
theory D1 in Example 10 that highlights this issue.

Let D∗1 be the domain specification given in Examples 3 and 4 without the two statements about
the observability

z observes distract(y)〈x〉 if looking(z) z observes signal(y)〈x〉 if looking(z) (17)

and I1 be the set of initial statements given in Example 5. Furthermore, let
δ∗A = distract(C)〈A〉; open〈A〉 and (M0, s0) be an initial state of (D∗1, I1), as described in
Example 10, respectively. The execution of δ∗A in (M0, s0) and the update models corresponding
to the occurrences of the action occurrences in δ∗A are shown in Figure 10. The states (M∗

1 , u0)

u0 u1A,C

A,C A,C

u2 u3A,B,C

A,B,C A,B,C

B

B B

B

! "B

A,C A,B,C

pre: looking(A) ∧
looking(C) pre: #

! "C

A,B A,B,C

pre: has_key(A) pre: #

(M0,s0)

$(distract(C)⟨A⟩,({A,C},∅,{B}))

(M*1,u0)

$(open⟨A⟩,({A,B},∅,{C}))

v0 v1A

A A

v2 v3A,B

A,B A,B

B

B B

B

v4
v5

A,C

A,C
A,C

v6 v7A,B,C

A,B,C
A,B,C

B

B
B

B

C

C

C

C

C
C

C

C

(M*2,v0)

s0 s1A,B,C

A,B,C A,B,C

Figure 10: Executing δ∗A in (M0, s0)

and (M∗
2 , v0) are results of executing distract(C)〈A〉 and δ∗A in (M0, s0), respectively, where the

interpretations of the worlds in these states are:
u0 = (s0, σ) with M∗

1 [π](u0) = {looking(A), looking(B), has key(A)}
u1 = (s1, σ) with M∗

1 [π](u1) = {looking(A), looking(B), head, has key(A)}
u2 = (s0, ε) with M∗

1 [π](u2) = {looking(A), looking(B), looking(C), has key(A)}
u3 = (s1, ε) with M∗

1 [π](u3) = {looking(A), looking(B), looking(C), head, has key(A)}
and
v0 = (u0, σ) with M∗

2 [π](v0) = {looking(A), looking(B), has key(A), opened}
v1 = (u1, σ) with M∗

2 [π](v1) = {looking(A), looking(B), head, has key(A), opened}

31

v2 = (u2, σ) with M∗
2 [π](v2) = {looking(A), looking(B), looking(C), has key(A), opened}

v3 = (u3, σ) withM∗
2 [π](v3) = {looking(A), looking(B), looking(C), head, has key(A), opened}

v4 = (u0, ε) with M∗
2 [π](v4) = {looking(A), looking(B), has key(A)}

v5 = (u1, ε) with M∗
2 [π](v5) = {looking(A), looking(B), head, has key(A)}

v6 = (u2, ε) with M∗
2 [π](v6) = {looking(A), looking(B), looking(C), has key(A)}

v7 = (u3, ε) with M∗
2 [π](v7) = {looking(A), looking(B), looking(C), head, has key(A)}

Because of the differences in the observability specification between D∗1 and D1, the update
model corresponds to the execution of distract(C)〈A〉 in (M0, s0) is different than its counterpart
in Example 10, in which B is oblivious of the occurrence of the action A distracts C. Therefore, by
the inertial principle of beliefs, B should believe that C is looking at the box after the occurrence of
distract(C)〈A〉. As such, one might argue that B should believe that C will observe the occurrence
of open〈A〉, and hence, B should believe that C believes that the box is open after the execution of
δ∗A in (M0, s0). In other words, the following is a reasonable conclusion13

(M∗
2 , v0) |= BBBC opened (18)

On the other hand, it is easy to verify that the following holds

(M∗
2 , v0) |= BBBC ¬opened (19)

Interestingly, this results does not affect the final outcome of the intended plan of A discussed in the
introductory example. In other words, if A were to execute the action of peeking into the box, A
will achieve its goal of letting B knows that A knows whether the coin lies heads up and C does not
know that A knows. The detailed computation can be found in https://arxiv.org/pdf/1511.
01960v2.pdf.

There could be different views on the difference between (19) and (18).
On the one hand, one might argue that the semantics of the language yields a counter intuitive

result. One proposal, as suggested by a reviewer, is to make the action occurrence of distract(C)〈A〉
to be observable to all agents in D∗1 as well, i.e., treating ω(distract(C)〈A〉, ({A,C}, ∅, {B}))
identical with ω(distract(C)〈A〉, ({A,B,C}, ∅, ∅)). Intuitively, this could be achieved by replacing
the observability statement about this action in D∗1 with

z observes distract(y)〈x〉 (∗)

Observe that doing so would remove the problem displayed in (19). However, it is not adequate
in the following situation. Consider the state (M ′

0, s
′
0) where M ′

0 has two worlds s′0 and s′1 and
the same structure as (M0, s0) with M ′

0[π](s′0) = M0[π](s0) \ {looking(B)} and M ′
0[π](s′1) =

M0[π](s1) \ {looking(B)}, i.e., B is not looking at the box in (M ′
0, s
′
0) and this is common

knowledge. The question is whether B should be allowed to be a full observer of the occurrence of
distrac(C)〈A〉 in (M ′

0, s
′
0). If we were to allow B to be a full observer of this action occurrence in

(M∗
1 , s0), then we should do so for (M ′

0, s
′
0); and, by virtue of (*), this is something expected. This,

13We thank the anonymous reviewer of an earlier version of this paper who raised this question and suggested a
possible solution.

32

in our view is a counter intuitive outcome if occurrences of reference setting actions are observable
to every agent.

On the other hand, one can attribute the difference between (19) and (18) to the difference
between the two action theories D1 and D∗1, i.e., the missing of the statements in (17) in D∗1.
This omission leads to different frame of references, and therefore, different update models for
distract(C)〈A〉 in (M0, s0) in the two theories. In other words, the specification in D∗1 does not
represent the observability of agents adequately. As such, in designing a mA∗ domain, it would be
useful to take into consideration the agents or groups of agents who would employ the domain in its
reasoning. We note that the current mA∗ does not consider beliefs and knowledge of agents in the
specification of observability statements (see, Section 5, for a more detailed discussion) and this is
an interesting issue that we leave for the future development of mA∗.

5. Related Work and Discussion

In this section, we connect our work to related efforts in reasoning about actions and their effects
in multi-agent domains. The background literature spans multiple areas. We will give a quick
introduction and focus our attention on the most closely related works.

5.1. Relating mA∗ and DEL and Update Model-based Languages
Throughout the paper, we refer to update models and employ them in defining the semantics of

mA∗ as the use of update models has been well-accepted in reasoning about dynamic multi-agent
systems. In the following, we will sometimes use “DEL specification” to refer to both update model-
and DEL-based specification as the concept of action models originates from the study of dynamic
epistemic logic. Whenever it is needed, we will refer to the specific formalization.

The key distinction between mA∗ specification and DEL specification lies in the fact that the
specification of effects of actions in mA∗ emphasizes the distinction between direct and indirect
effects of an action occurrence while DEL specification focuses on all effects. To reiterate, in mA∗,

• the direct effects of a world-altering action occurrence are the changes of the world that are
directly caused by the execution of an action; for instance, the direct effect of open〈A〉 is the
box is opened;

• the direct effects of a sensing action occurrence are the truth values of the sensed formula; for
instance, the direct effect of peek〈A〉, when the coin lies tails up, is “tail is true”;

• the direct effect of a truthful announcement action occurrence is that the truth value of
the announced formula is true; for instance, the direct effect of shout tail〈A〉 is that the
information “tail is true” was announced.

In all cases, the indirect effects of an action occurrence are the changes in the beliefs of agents who
might be aware of the action occurrence. Such indirect effects are specified by the set of statements
of the form (9) and (10). We note that even in single agent domains world-altering actions could also
create indirect effects and this has been well studied (see, e.g., Giunchiglia et al. (1997); Shanahan
(1999)). The advantage of directly dealing with indirect effects—in the form of state constraints—in

33

planning has been discussed in (Thiebaux et al., 2003; Tu et al., 2011). This type of indirect effects
of actions could be included in mA∗ by adding statements, referred as static causal laws, of the
form

ϕ if ψ

where ϕ and ψ are fluent formulae. We have conducted a preliminary investigation of this issue
in an earlier version of mA∗ in Baral et al. (2013). We decided to keep it out of this paper for the
simplicity of the presentation.

Contrary to the design of mA∗, formulae in the update model language aim at specifying all
effects of an action occurrence. To see it, let us consider the action peek〈A〉. It is generally accepted
that this action helps A—under the right circumstances—learn whether or not the coin lies heads or
tails up. Since the effects of this action on the knowledge of other agents are different in different
situations (pointed Kripke structure), different formulae will need to be developed to describe the
effects of this particular action (more on this in Example 11). In mA∗, such indirect effects of action
occurrences are encoded in statements of the form (9) and (10). Due to the restrictions imposed
on these two types of statements, some different effects of actions that could be represented using
update models cannot be described in mA∗ (c.f., Section 5.1.2).

The reader should note that in this discussion two different kinds of objects are touched on: action
occurrences and actions. This is intentional – in the update model language, the kinds of objects
being discussed are rightly thought of as action occurrences (i.e., individual members of a more
abstract type); whereas in mA∗ (and action language approach more generally), the fundamental
abstraction is that of an action (seen as a type, of which distinct occurrences are members). The
difference in focus leads to a much greater simplicity of action descriptions in the presence of
multiple agents.

Let us consider the simplified version of the coin in a box problem as presented in Example
2—with three agents A, B, and C, a box containing a coin, and initially it is common knowledge
that A knows whether the coin lies heads or tails up and B and C do not. Let us assume that
agent A announces that the coin lies heads up. In our formalism, we express the action of A as
an instance shout head〈A〉 of the action shout head and it can result in different update models
(Figure 2). In DEL, the update model for the same action occurrence (i.e., shout head〈A〉) will
also need to include additional information about all three agents A, B, and C encoding their “roles”
or “perspectives” (more in Section 5.1.1). By roles or perspectives we mean information such as
who executes the action occurrence, who observes (partially observes the action occurrence), or
who is oblivious must be accompanied with the update models; for example, without additional
information, it is not clear who among A or B executes the action of announcing that the coin lies
heads up given the update model on the right of Figure 2.

Thus, a critical difference between the mA∗ approach to representing multi-agent actions and the
approach used in DEL with update models lies in the way we encode the information about agents
roles and perspectives, which need to be accompanied with the description of update models14, as
part of the state in mA∗. There are some important implications of such difference and we discuss
them in the following subsections.

14In a recent paper, (Bolander, 2018) proposed to encode this information as edge-conditions of update models.

34

5.1.1. Compactness of Representation
As we discussed in Section 4, each action occurrence in mA∗ corresponds to an update model.

As such, any mA∗ domain could be represented as a theory in update model language. Since each
action occurrence is associated with a pointed Kripke structure, it follows that, theoretically, we
might need exponentially many formulae for representing a mA∗ domain. The next example shows
that we need an exponential number of update models to describe an action with a linear number of
“indirect effects” in mA∗ domain.

Example 11. Let us consider, for example, the action occurrence peek〈A〉 from domain D1. To
describe different scenarios related to this action occurrence, we need to have an update model for
all of the following cases:
• Both B and C are looking;
• Either B or C is looking but not both; and
• Both B and C are not looking.

In our approach, the above example is specified in a very different way: the action is about sensing
head (or tail). The agents who sense it, who observe the sensing take place, and who are oblivious
can be specified directly or can be specified indirectly in terms of conditions, such as which
agents are near the sensing, which ones are watching from far, and which ones are looking away,
respectively. As such, to specify all four cases, we write

B aware of peek〈A〉 if looking(B) and C aware of peek〈A〉 if looking(C).

It is easy to see that if we have n agents and agent A executes the action peek then if we want to
include the various possibilities in the finite set of action models that can be used for planning in
the context of Bolander and Andersen (2011), we will need 2n−1 action models for specifying all
possible consequences of peek〈A〉. On the other hand, we only need n− 1 statements of the form
(10) in the action specification part, as the set of looking(X) in our framework is a part of the state.

It is easy to see that similar conclusions can be made with regards to an occurrence of a world-
altering action or an announcement action. In summary, we can say that to represent a mA∗ domain
D in the action model language, an exponential number of action models is needed in the worst
cases. This advantage of mA∗ can also be seen in representing and reasoning about action sequences.
We observe that extensions of DEL have been proposed to address this issue in Bolander (2018) and
Engesser et al. (2018).

Narratives and Dynamic Evolution of Multi-agent Actions. Let us consider a scenario with two
agents A and B. Initially, agent B is looking at agent A. Agent A lifts a block and, after some
time, agent A puts down the block. Some time later, agent B is distracted, say by A, and then
agent A again lifts the block. In our formulation, this narrative can be formalized by first describing
the initial situation, and then describing the sequence of actions that have occurred, which for this
example is:

liftBlock〈A〉; putDown〈A〉; distract(B)〈A〉; liftBlock〈A〉.

35

The description of this evolution of scenario in DEL is not as simple: each action occurrence will
have to be described as an update model containing information about both agents A and B. In
addition, such a description (in DEL) will be partly superfluous, as it will have to record information
about B looking (or not looking) at A in the update model, while that information is already part
of the state. Thus, the approach used in mA∗ to describe this narrative is more natural than the
representation in DEL.

Observe that, in our narrative, the action instance liftBlock〈A〉 appears twice. However, due to
the difference in the roles and perspectives over time, the two occurrences of liftBlock〈A〉 correspond
to two different update models. This shows how, using the mA∗ formulation, we can support the
dynamic evolution of update models, as result of changes in perspective fluents in the state. In DEL,
the two update models are distinct, there is no direct connection between them, and neither one does
evolve from the other.

In order to further reinforce this point, let us consider another narrative example. Let us consider
a scenario with three agents, A, B, and C. Initially, it is common knowledge that none of the agents
knows whether the coin in the box is lying heads up or tails up. In addition, let us assume that
initially A and B are looking at the box, while C is looking away. Let us consider the narrative
where A peeks into the box; afterwards, A realizes that C is distracted and signals C to look at the
box as well; finally A peeks into the box one more time. In mA∗, this situation can be described
again by a sequence of actions:

peek〈A〉; signal(C)〈A〉; peek〈A〉

The two occurrences of peek(A) correspond to two different update models; the second occurrence
is an evolution of the first caused by the execution of signal(C)〈A〉. In DEL, the relevance of
the intermediate action signal(C)〈A〉, and its impact on the second occurrence of peek〈A〉, is
mostly lost—and this results in the use of two distinct update models for peek〈A〉 with complete
information about the whole action scenario.

The key aspect that allows a natural representation of narratives and evolution of update models
in mA∗ is the presence of the agents’ perspectives and roles encoded as perspective fluents of a state,
and their use to dynamically generate the update models of the actions. While DEL can include
perspective fluents as part of the states as well, it does not have a way to take advantage of them in a
similar way as mA∗.

5.1.2. Simplicity vs. Expressivity
The formulation adopted in this paper is limited in expressivity to ensure simplicity. It is limited

by the (perspective) fluents we have and how we use them. On the other hand, the action model
language is more complex and also more expressive. This is also evident in the simplicity of the
update models used in mA∗ (Definitions 13–14). This leads to the following limitations of mA∗ in
comparison with the action model language:

Complex action occurrences. The simple version of mA∗ as presented here does not consider
complex epistemic action occurrences. An example of this type of action occurrences is the
mayread action in Example 5.4 from (van Ditmarsch et al., 2007). It represents an event that might
or might not happen. Let us have a closer look at the action mayread. Anne and Bill are in a cafe.

36

Some agent brings a letter to Anne. The letter says that United Agents is doing well. B leaves
the table and orders a drink at the bar so that A may have read the letter while he is away. In this
example, A did not read the letter.

1 0A,B

A,B A,B

! "A,B

A,B A,B

pre: 1 pre: 0

1 0A,B

A,B A,B

1 0B

A,B A,B

B B

$B

A,B A,B

pre: 1 pre: 0

B B

mayread

Figure 11: Update model of mayread without an equivalent mA∗ representation

Initially, both A and B do not know the content of the letter sent to A. Figure 11 depicts the
initial pointed Kripke structure (left) and the pointed Kripke structure after mayread (right). An
update model representing the action mayread is given in the middle of Figure 11. It is easy to see
that any update model facilitating this transition will need to have at least four events, two with 1 as
the precondition and two with 0 as the precondition. Since any update model in mA∗ needs at most
three events, this shows that there exists no equivalent mA∗ representation of mayread.

In our action language based framework, mayread can be viewed as a combination (disjunction)
of two “primitive actions,” one is A reads the letter and another one is A does nothing. One can then
use constructs from Golog (Levesque et al., 1997) with mA∗ actions as primitive actions to express
mayread.

We note that mA∗ also does not consider non-deterministic world-altering actions (e.g., the
action of tossing a coin results in the coin lies heads or tails up). This type of actions has been
extensively studied in action languages for single-agent domains (see, e.g., Gelfond and Lifschitz
(1998)). They can be added to mA∗ easily by allowing ` in (6) to be arbitrary formula. Similar to
static causal laws, we decide to keep it out of this paper for the simplicity of the presentation in this
paper.

Agents’ Observability. In mA∗, statements of the form (9) and (10) are used for specifying an
agent’s observability of action occurrences. It is expressed via fluent formulae and is evaluated
with respect to the real-state of the world. In general, such observability can be beliefs of the agent
about other agents. Consider the update model15 in Figure 12 (middle). It represents an action α of
an agent A who believes that after she executes the action then both A and B can see an incorrect
outcome 1—i.e., A and B are fully observant. In reality, B is oblivious. The initial pointed Kripke

15We thank an anonymous reviewer of an earlier version of this paper who suggested a similar example.

37

structure is given in the left and the result of α is on the right of Figure 12. This shows that, in
multi-agent domains, an agent’s observability could also be considered as beliefs, and as such affect
the beliefs of an agent about other agents’ beliefs after the execution of an action. The present mA∗
language does not allow for such specification.

!
"

B

A,B
pre: 0

#

A,B

pre: 1

A

pre: $

0 1A,B

A,B A,B

0 0B

A,B

1 1

A,B A,B

A BB

Figure 12: An update model of an action requiring different type of observability statements without an equivalent
mA∗ representation

The simplicity of our formulation is by design, and not an inherent flaw of our approach. Indeed,
one could envision developing a complete encoding of the complex graph structure of an update
model as part of state, using an extended collection of perspective fluents—but, at this time, we do
not have a corresponding theory of change to guide us in using these more expressive perspective
fluents to capture the full expressive power of update models in DEL. Hence, our current formalism
is less expressive than DEL. However, the higher expressiveness of update models provides us with
a target to expand mA∗ and capture more general actions.

5.1.3. Other Differences
The previous sections detail the key differences between mA∗ and DEL based on the differences

in design and focus of mA∗ and DEL. We next discuss their differences from other angles.

Analogy with Belief Update. Another approach to explore the differences between mA∗ and DEL
builds on the analogy to the corresponding differences between belief updates and the treatment of
actions and change in early action languages (Gelfond and Lifschitz, 1998).

Papers on belief updates define and study the problem of updating a formula φ with a formula ψ.
In contrast, in reasoning about actions and change, the focus is on defining the resulting state of
the world after a particular action is performed in a particular world, given a description of (i) how
the action may change the world, (ii) when the action can be executed; and (iii) how the fluents in
the world may be (possibly causally) related to each other. In such a context, given a state s and an
action a, it is possible to see the determination of the resulting state as the update of s by a formula
ϕ; But, what is important to consider is that the ϕ is not just the collection of effects of the action a,
but incorporates several other components, that take into account the static causal laws as well as
which conditions (part of the conditional effects of a) are true in s.

This situation is not dissimilar to the distinction between DEL update models and mA∗. An
update model can be encoded by an action formula, and the resulting state can be obtained by
updating the starting state with such formula. In DEL, such action formula has to be given directly.
Instead, our considerations in mA∗ are in the spirit of the early research in reasoning about actions

38

and change—where we focus on describing actions and their effects, their executability conditions,
and where a resulting “state” is determined by applying these descriptions to the “state” where a
particular action is performed. Thus, the action formula in this latter case is not explicitly given, but
derived from the description of the actions, their effects, and executability conditions.

Taking the analogy further, an important application of reasoning about actions is to determine
action sequences or plan structures that achieve a given goal. This is different from searching for a
sequence of formulae ψi’s which, if used to sequentially update a given initial state, will generate a
goal state.

Executing Actions. The notion of actions adopted in mA∗ is designed to enable their executions by
one or multiple agents and follows the common meaning of an action16. For example, the action
instance peek〈A〉 can be executed only by agentA. On the other hand, the notion of an update model
is designed for describing the state changes and does not include the information about the actors of
the update model, i.e., the agents who will execute the actions specified by the model. It is therefore
not always possible to identify the agents who would execute an update model from its description.
For example, by simply looking at Figure 5 or examining the definition of the corresponding update
model, we cannot distinguish whether the update model is about the instance raising hand(A) or
raising hand(B).

Hence, our representation of actions where perspective fluents are part of the state (and not part
of the action) is more appropriate than the representation of actions in the initial formulations of
DEL van Ditmarsch et al. (2007). We note that in the planning using DEL setting, relation between
agents and action models is introduced in (Engesser et al., 2017; Löwe et al., 2011) to address this
issue.

Value of Update Models:. Having discussed the differences between mA∗ and update models, we
would like to point out that update models present a very good technical tool for the understanding
of effects of actions in multi-agent domains. In fact, the transition function Φ for mA∗ action
theories can be effectively characterized using update models, as described in Section 4.

5.2. Previous Work by the Authors
Early attempts to adapt action languages to formalize multi-agent domains can be found in

(Baral et al., 2010b; Son et al., 2009; Son and Sakama, 2009). In these works, the action languages
A, B, and C have been extended to formalize multi-agent domains.

The research in (Son et al., 2009; Son and Sakama, 2009) investigates the use of action languages
in multi-agent planning context and focus on the generation of decentralized plans for multiple
agents, to either jointly achieve a goal or individual goals.

In (Baral et al., 2010b), we show that several examples found in the literature—created to address
certain aspect in multi-agent systems (e.g., (Boella and van der Torre, 2005; Gerbrandy, 2006;
van der Hoek et al., 2005; Herzig and Troquard, 2006; Sauro et al., 2006; Spaan et al., 2006))—can
be formalized using an extension of the action language C. Yet, most of the extensions considered

16For example, the relevant dictionary meaning of “action is (1) something done or performed; act; deed. (2) an act
that one consciously wills and that may be characterized by physical or mental activity.

39

in (Baral et al., 2010b; Son et al., 2009; Son and Sakama, 2009) are inadequate for formalizing
multi-agent domains in which reasoning about knowledge of other agents is critical. To address
this shortcoming, we developed and investigated several preliminary versions of mA∗ (Baral et al.,
2010a; Pontelli et al., 2010; Baral and Gelfond, 2010). We started with an attempt to formulate
knowledge of multiple agents in (Baral et al., 2010a); we successively extended this preliminary
version of mA∗ with the use of static observability specifications in (Pontelli et al., 2010). The
language developed in this paper subsumes that of (Pontelli et al., 2010). In (Baral and Gelfond,
2010), we demonstrated the use of update models to describe the transition function for the action
language of (Pontelli et al., 2010).

mA∗ differs from all earlier versions of the language, in that it clearly differentiates the agents
who execute the action from the agents who would observe (or partially observe) the effects of the
actions, or are oblivious of the action execution. This is important, since an agent might execute an
action without observing its effects. For example, a blind agent would not be able to observe the
effects of his action of operating a light switch; an agent firing a gun in a pitch dark night would not
be able to observe whether or not he hits the target.

Another, much more important, difference between mA∗ and earlier versions of the language
lies in the definition of the function ΦD. In earlier versions, sensing (or announcement) actions do
not help the agents in correcting their beliefs. This can be seen in Figure 13. In this example A
has the false belief about f (f is true in s0, the real state of the world, and false in s1). A executes
the action that senses f . The top part shows how earlier versions of mA∗ treat this sensing action
occurrence whose update template is in the middle of the figure. The result is the state shown on the
right with four disconnected worlds z0 = (s0, σ), z1 = (s0, ε), z2 = (s1, τ), and z3 = (s1, ε) with
the interpretation of zj identical to that of si where zj = (si,). As we can see, A becomes ignorant
about everything in this state. The bottom part shows how mA∗ deals with such situation: first, it
corrects the beliefs of A and then applies the update. This results in the state on the right (bottom)
in which A knows that f is true, which corresponds to the intuitive result of sensing.

s0 s1A

A !
"

A

A
pre: f

#

A

pre: ¬f pre: $

z0 z1

z2 z3

A A

s0 s1

A !
"

A

A
pre: f

#

A

pre: ¬f pre: $

z0 z1

z2 z3

A A

A

A

Earlier versions

mA*
A

Figure 13: Sensing f helps A to correct her false beliefs in mA∗

40

5.3. Other Languages
A generalized version of STRIPS, called MA-STRIPS, has been proposed for studying multi-

agent classical planning model (Brafman and Domshlak, 2008). In this model, each agent possess a
set of actions that they can execute. Distinctions between public and private fluents are considered,
which allow for the definition of internal and public actions. This extension is closely related to our
earlier extensions of action languages (e.g., (Baral et al., 2010b; Son et al., 2009)). Therefore, the
key difference between mA∗ and MA-STRIPS lies in the focus on reasoning about beliefs of agents
about the world and about the beliefs of other agents in mA∗ that is not considered in MA-STRIPS.
On the other hand, the focus in (Brafman and Domshlak, 2008) is to develop plans for multiple
agents to coordinate in achieving a give state of the world, which is not our focus in the development
of mA∗.

GDL-III, introduced in (Thielscher, 2017), as an epistemic game specification language, could
potentially be used as a specification language for epistemic planning. Syntactically, GDL-III
includes specification for two predicates for reasoning about knowledge of each agent knows(r,p)
and common knowledge knows(p) among all agents as well as sensing actions (e.g., the action peek
in Example 1) and announcement actions (e.g., the action shout tail in Example 1). The effects of
actions include observations that allow for the agents to update their knowledge. The semantics
of a game specification in GDL-III is defined over knowledge states and sequences of actions,
each knowledge state is a pair of a set of true-atoms representing the true state of the world and a
collection of knows-atoms representing the knowledge of the agents. It is mentioned in (Thielscher,
2017) that this definition is well-defined for acyclic game descriptions. We observe that Engesser
et al. (2018) proved that GDL-III is equivalent to an extension of DEL which allows for a succinct
representation of events in update models and conditional effects.

Comparing to GDL-III, mA∗ differs in the following ways. First, a GDL-III game initial state
contains only fluents about the state of the world, i.e., it only consider initial state representing
by a set of statements of the form (1) in which ϕ is a fluent. mA∗ does allow arbitrary formulae.
Finitary S5-theories would subsume the set of initial states permissible in GDL-III. Second, nested
knowledge could be specified in GDL-III but at the cost of extra variables. Furthermore, observation
tokens of GDL-III are about the real state of the world and thus it will also require some extra
variables (e.g, defined predicate for kwhether) to specify something likes B knows that A looks into
the box and knows which side of the coin is up. The third and perhaps most significant difference
between GDL-III and mA∗ lies in that in GDL-III, agents receive their individual perceptions after
each round and these perceptions are true information about the real state of the world while agents’
perceptions are dictated by the observability statements in mA∗. As such, an agent might not know
the truth value of a proposition but never has false beliefs about the world in GDL-III while it is
possible in mA∗. We believe that this stems from the fact that GDL-III focuses on knowledge of
agents and mA∗ deals with beliefs of agents.

5.4. mA∗ and Action Languages for Single-Agent Domains
mA∗ is a high-level action language for multi-agent domains. It is therefore instructive to discuss

the connection between mA∗ and action languages for single-agent domains. First, let us observe
that mA∗ has the following multi-agent domain specific features:

41

• it includes announcement actions; and

• it includes specification of the agents’ observability of action occurrences.

As it turns out, if we remove all features that are specific to multi-agent domains from mA∗, and
consider the S5-entailment as its semantics, then the language is equivalent to the language AK
by Son and Baral (2001). Formally, let us consider a mA∗ definite action theory (I,D) over
the signature 〈AG,F ,A〉 such that |AG| = 1 and D does not contain statements of the form (8)
(announcement actions) and statements of the form (9)-(10). Let us define

IAK
= {ϕ | ϕ appears in a statement of the form (1) or (2) in I}.

Then, the following holds

(I,D) |=S5 ϕ after δ iff (IAK
, D) |=AK

ϕ after δ.

This shows that mA∗ is indeed a generalization of action languages for single-agent domains to
multi-agent domains. This also supports the claim that other elements that have been considered in
action languages of single-agent domains, such as static causal laws, non-deterministic actions, or
parallel actions could potentially be generalized to mA∗.

6. Conclusions and Future Works

In this paper, we developed an action language for representing and reasoning about effects of
actions in multi-agent domains. The language considers world-altering actions, sensing actions, and
announcement actions. It also allows the dynamic specification of agents’ observability with respect
to action occurrences, enabling varying degrees of visibility of action occurrences and action effects.
The semantics of the language relies on the notion of states (pointed Kripke structures), used as
representations of the states of the world and states of agents’ knowledge and beliefs; the semantics
builds on a transition function, which maps pairs of states and actions to sets of states and employs
the well-known notion of update models as the underlying machineries.

We discussed several properties of the transition function and identified a class of theories
(definite action theories) whose set of initial S5-states is finite, thus allowing for the development of
algorithms for the S5-entailment relation that is critical in applications such as planning, temporal
reasoning, and diagnosis.

The development of mA∗ is a first step towards the goal of developing scalable and efficient
automated reasoning and planning systems in multi-agent domains. Important next steps include
extending the language to deal with lying and/or misleading actions, refining the distinction between
knowledge and beliefs of the agents, and specifying more general models of agents’ observability,
to capture some of the capabilities of update models that are missing from mA∗.

Acknowledgments

The last two authors have been partially supported by NSF grants 1914635, 1757207, and
1812628.

42

References

Agotnes, T., Lakemeyer, G., Löwe, B., Nebel, B., 2014. Planning with epistemic goals. Tech. rep.

Allen, M., Zilberstein, S., 2009. Complexity of decentralized control: Special cases. In: 23rd
Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting
held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc., pp.
19–27.

Aucher, G., Bolander, T., 2013. Undecidability in epistemic planning. In: Rossi, F. (Ed.), IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,
China, August 3-9, 2013. IJCAI/AAAI.

Baltag, A., Moss, L., 2004. Logics for epistemic programs. Synthese.

Baral, C., Bolander, T., McIlraith, S., Ditmarsch, H. V., 2017. Epistemic planning. Tech. rep.
URL http://www.dagstuhl.de/17231

Baral, C., Gelfond, G., 2010. On representing actions in multi-agent domains. In: Proceedings of
the Symposium on Constructive Mathematics.

Baral, C., Gelfond, G., Pontelli, E., Son, T., 2010a. Modeling multi-agent scenarios involving
agents knowledge about other’s knowledge using ASP. In: Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems. International Foundation for
Autonomous Agents and Multiagent Systems, pp. 259–266.

Baral, C., Gelfond, G., Pontelli, E., Son, T. C., 2012. An action language for reasoning about beliefs
in multi-agent domains. In: Proceedings of NMR.

Baral, C., Gelfond, G., Pontelli, E., Son, T. C., 2013. Reasoning about the beliefs of agents in
multi-agent domains in the presence of state constraints: The action language mal. In: Leite,
J., Son, T. C., Torroni, P., van deer Torre, L., Woltran, S. (Eds.), Proceedings of the 14th
International Workshop, Computational Logic in Multi-Agent Systems, CLIMA VIX, Coruna,
Spain, September 16-18, 2013. Vol. 8143 of Lecture Notes in Computer Science. Springer, pp.
290–306.

Baral, C., Son, T. C., Pontelli, E., 2010b. Reasoning about multi-agent domains using action
language C: A preliminary study. In: Dix, J., Fisher, M., Novák, P. (Eds.), Computational
Logic in Multi-Agent Systems - 10th International Workshop, CLIMA X, Hamburg, Germany,
September 9-10, 2009, Revised Selected and Invited Papers. Vol. 6214 of Lecture Notes in
Computer Science. Springer, pp. 46–63.

Bernstein, D. S., Givan, R., Immerman, N., Zilberstein, S., 2002. The complexity of decentralized
control of markov decision processes. Math. Oper. Res. 27 (4), 819–840.

43

Boella, G., van der Torre, L. W. N., 2005. Enforceable social laws. In: Dignum, F., Dignum, V.,
Koenig, S., Kraus, S., Singh, M. P., Wooldridge, M. (Eds.), 4rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The
Netherlands. ACM, pp. 682–689.

Bolander, T., 2018. Seeing is believing: Formalising false-belief tasks in dynamic epistemic logic.
In: Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. Vol. 12 of Outstanding
Contributions to Logic. Springer, Cham., pp. 207–236.

Bolander, T., Andersen, M., 2011. Epistemic Planning for Single and Multi-Agent Systems. Journal
of Applied Non-Classical Logics 21 (1).

Bolander, T., Jensen, M. H., Schwarzentruber, F., 2015. Complexity results in epistemic planning.
In: Yang, Q., Wooldridge, M. (Eds.), Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015.
AAAI Press, pp. 2791–2797.

Brafman, R. I., Domshlak, C., 2008. From one to many: Planning for loosely coupled multi-
agent systems. In: Rintanen, J., Nebel, B., Beck, J. C., Hansen, E. A. (Eds.), Proceedings of
the Eighteenth International Conference on Automated Planning and Scheduling, ICAPS 2008,
Sydney, Australia, September 14-18, 2008. AAAI, pp. 28–35.

Castellini, C., Giunchiglia, E., Tacchella, A., 2001. Improvements to sat-based conformant planning.
In: Proceedings of 6th European Conference on Planning (ECP-01).

de Weerdt, M., Bos, A., Tonino, H., Witteveen, C., 2003. A resource logic for multi-agent plan
merging. Ann. Math. Artif. Intell. 37 (1-2), 93–130.

de Weerdt, M., Clement, B., 2009. Introduction to planning in multiagent systems. Multiagent Grid
Systems 5, 345–355.

del Val A., Shoham, Y., 1994. A unified view of belief revision and update. Journal of Logic and
Computation, Special issue on Actions and processes, M. Georgeff (ed.).

Durfee, E., 1999. Distributed Problem Solving and Planning. In: Muliagent Systems (A Modern
Approach to Distributed Artificial Intelligence). MIT Press, pp. 121–164.

Engesser, T., Bolander, T., Mattmüller, R., Nebel, B., 2017. Cooperative epistemic multi-agent
planning for implicit coordination. In: Ghosh, S., Ramanujam, R. (Eds.), Proceedings of the
Ninth Workshop on Methods for Modalities, M4M@ICLA 2017, Indian Institute of Technology,
Kanpur, India, 8th to 10th January 2017. Vol. 243 of EPTCS. pp. 75–90.

Engesser, T., Mattmüller, R., Nebel, B., Thielscher, M., 2018. Game description language and
dynamic epistemic logic compared. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. pp.
1795–1802.

44

Fabiano, F., Burigana, A., Dovier, A., Pontelli, E., 2020. EFP 2.0: A Multi-Agent Epistemic Solver
with Multiple E-State Representations. In: International Conference on Automated Planning and
Scheduling (ICAPS). AAAI Press.

Fagin, R., Halpern, J., Moses, Y., Vardi, M., 1995. Reasoning about Knowledge. MIT press.

Fikes, R., Nilson, N., 1971. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2 (3–4), 189–208.

Friedman, N., Halpern, J., 1999. Modeling Belief in Dynamic Systems: Revision and Update.
Journal of Artificial Intelligence Research 10, 117–167.

Gelfond, M., Lifschitz, V., 1993. Representing actions and change by logic programs. Journal of
Logic Programming 17 (2,3,4), 301–323.

Gelfond, M., Lifschitz, V., 1998. Action Languages. Electronic Transactions on Artificial Intelli-
gence 3 (6).

Gerbrandy, J., 2006. Logics of propositional control. In: Nakashima, H., Wellman, M. P., Weiss,
G., Stone, P. (Eds.), 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006. ACM, pp. 193–200.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., Wilkins,
D., 1998. PDDL — the Planning Domain Definition Language. Version 1.2. Tech. Rep. CVC
TR98003/DCS TR1165, Yale Center for Comp, Vis and Ctrl.

Giunchiglia, E., Kartha, G., Lifschitz, V., 1997. Representing action: indeterminacy and ramifica-
tions. Artificial Intelligence 95, 409–443.

Goldman, C. V., Zilberstein, S., 2004. Decentralized control of cooperative systems: Categorization
and complexity analysis. Journal of Artificial Intelligence Resesearch (JAIR) 22, 143–174.

Guestrin, C., Koller, D., Parr, R., 2001. Multiagent planning with factored mdps. In: Dietterich,
T. G., Becker, S., Ghahramani, Z. (Eds.), Advances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8,
2001, Vancouver, British Columbia, Canada]. MIT Press, pp. 1523–1530.

Herzig, A., Lang, J., Marquis, P., 2005. Action Progression and Revision in Multiagent Belief
Structures. In: Sixth Workshop on Nonmonotonic Reasoning, Action, and Change (NRAC).

Herzig, A., Troquard, N., 2006. Knowing how to play: uniform choices in logics of agency. In:
Nakashima, H., Wellman, M. P., Weiss, G., Stone, P. (Eds.), 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12,
2006. pp. 209–216.

Huang, X., Fang, B., Wan, H., Liu, Y., 2017. A general multi-agent epistemic planner based on
higher-order belief change. In: Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence (IJCAI-17).

45

Katsuno, H., Mendelzon, A., 1992. On the difference between updating a knowledge base and
revising it. In: Proceedings of KR 92. pp. 387–394.

Kominis, F., Geffner, H., 2015. Beliefs in multiagent planning: From one agent to many. In:
Proceedings of the Twenty-Fifth International Conference on Automated Planning and Scheduling,
ICAPS 2015, Jerusalem, Israel, June 7-11, 2015. pp. 147–155.

Le, T., Fabiano, F., Son, T. C., Pontelli, E., 2018. EFP and PG-EFP: Epistemic Forward Search
Planners in Multi-Agent Domains. In: International Conference on Automated Planning and
Scheduling (ICAPS). AAAI Press.

Levesque, H., Reiter, R., Lesperance, Y., Lin, F., Scherl, R., April-June 1997. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31 (1-3), 59–84.

Lifschitz, V., 1987. On the semantics of STRIPS. In: Georgeff, M., Lansky, A. (Eds.), Reasoning
about Actions and Plans. Morgan Kaufmann, San Mateo, CA., pp. 1–9.

Liu, Q., Liu, Y., 2018. Proceedings of the twenty-seventh international joint conference on artificial
intelligence, IJCAI 2018, july 13-19, 2018, stockholm, sweden. In: Lang, J. (Ed.), Proceedings
of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden. ijcai.org, pp. 1912–1920.

Löwe, B., Pacuit, E., Witzel, A., 2011. Del planning and some tractable cases. In: van Ditmarsch,
H., Lang, J., Ju, S. (Eds.), Logic, Rationality, and Interaction. Vol. 6953 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 179–192.

McCarthy, J., 1959. Programs with common sense. In: Proceedings of the Teddington Conference
on the Mechanization of Thought Processes. Her Majesty’s Stationery Office, London, pp. 75–91.

Muise, C., Belle, V., Felli, P., McIlraith, S., Miller, T., Pearce, A. R., Sonenberg, L., 2015. Planning
over multi-agent epistemic states: A classical planning approach. In: Proceedings of AAAI.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D. V., Marsella, S., 2003. Taming decentralized pomdps:
Towards efficient policy computation for multiagent settings. In: Gottlob, G., Walsh, T. (Eds.),
IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003. Morgan Kaufmann, pp. 705–711.

Pednault, E., 1989. ADL: Exploring the middle ground between STRIPS and the situation calculus.
In: Brachman, R., Levesque, H., Reiter, R. (Eds.), Proceedings of the First International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann, pp.
324–332.

Peshkin, L., Savova, V., 2002. Reinforcement learning for adaptive routing. In: Proceedings of the
Int. Joint Conf. on Neural Networks.

46

Pontelli, E., Son, T., Baral, C., Gelfond, G., 2010. Logic programming for finding models in
the logics of knowledge and its applications: A case study. Theory and Practice of Logic
Programming 10 (4-6), 675–690.

Sauro, L., Gerbrandy, J., van der Hoek, W., Wooldridge, M., 2006. Reasoning about action
and cooperation. In: AAMAS ’06: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems. ACM, New York, NY, USA, pp. 185–192.

Shanahan, M., 1999. The ramification problem in the event calculus. In: Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm, Sweden,
July 31 - August 6, 1999. 2 Volumes, 1450 pages. pp. 140–146.

Son, T., Pontelli, E., Sakama, C., 2009. Logic Programming for Multiagent Planning with Negotia-
tion. In: Hill, P. M., Warren, D. S. (Eds.), Logic Programming, 25th International Conference,
ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings. Vol. 5649 of Lecture Notes in
Computer Science. Springer, pp. 99–114.

Son, T., Sakama, C., 2009. Reasoning and planning with cooperative actions for multiagents
using answer set programming. In: Baldoni, M., Bentahar, J., Lloyd, J., van Riemsdijk, B.
(Eds.), Declarative Agent Languages and Technologies VI, 6th International Workshop, DALT
2009, Budapest, Hungary, 2009, Revised Selected and Invited Papers. Vol. 5948. Springer, pp.
208–227.

Son, T. C., Baral, C., January 2001. Formalizing sensing actions - a transition function based
approach. Artificial Intelligence 125 (1-2), 19–91.

Son, T. C., Pontelli, E., Baral, C., Gelfond, G., 2014. Finitary s5-theories. In: Fermé, E., Leite,
J. (Eds.), Logics in Artificial Intelligence - 14th European Conference, JELIA 2014, Funchal,
Madeira, Portugal, September 24-26, 2014. Proceedings. Vol. 8761 of Lecture Notes in Computer
Science. Springer, pp. 239–252.

Son, T. C., Pontelli, E., Baral, C., Gelfond, G., 2015. Exploring the KD45n Property of a Kripke
Model after the Execution of an Action Sequence. In: AAAI.

Son, T. C., Tu, P. H., Gelfond, M., Morales, R., 2005. Conformant Planning for Domains with
Constraints — A New Approach. In: Proceedings of the Twentieth National Conference on
Artificial Intelligence. pp. 1211–1216.

Spaan, M. T. J., Gordon, G. J., Vlassis, N. A., 2006. Decentralized planning under uncertainty for
teams of communicating agents. In: Nakashima, H., Wellman, M. P., Weiss, G., Stone, P. (Eds.),
5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2006), Hakodate, Japan, May 8-12, 2006. pp. 249–256.

Thiebaux, S., Hoffmann, J., Nebel, B., 2003. In Defense of PDDL Axioms. In: Proceedings of the
18th International Joint Conference on Artificial Intelligence (IJCAI’03).

47

Thielscher, M., 2017. Gdl-iii: A description language for epistemic general game playing. In:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-
17).

Tu, P., Son, T., Gelfond, M., Morales, R., January 2011. Approximation of action theories and its
application to conformant planning. Artificial Intelligence Journal 175 (1), 79–119.

van Benthem, J., 2007. Dynamic logic of belief revision. Journal of Applied Non-Classical Logics
17(2), 129–155.

van Benthem, J., van Eijck, J., Kooi, B. P., 2006. Logics of communication and change. Inf. Comput.
204 (11), 1620–1662.

van der Hoek, W., Jamroga, W., Wooldridge, M., 2005. A logic for strategic reasoning. In: Dignum,
F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., Wooldridge, M. (Eds.), 4rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), July 25-29,
2005, Utrecht, The Netherlands. ACM, pp. 157–164.

van Ditmarsch, H., van der Hoek, W., Kooi, B., 2007. Dynamic Epistemic Logic. Springer.

van Eijck, J., 2004. Dynamic epistemic modelling. Tech. rep.

van Eijck, J., 2017. Public announcements and public lies. Tech. rep., Lying Workshop.

Wan, H., Yang, R., Fang, L., Liu, Y., Xu, H., 2015. A complete epistemic planner without the
epistemic closed world assumption. In: Yang, Q., Wooldridge, M. (Eds.), Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015. AAAI Press, pp. 3257–3263.
URL http://ijcai.org/proceedings/2015

Appendix A: Proofs of Theorems

Recall that the following notations are used in the presentation of the theorems.
• D denotes a consistent mA∗ domain;
• (M, s) denotes a state; and
• a is an action instance, whose precondition is given by the statement

executable a if ψ

in D, and a is executable in (M, s).
• ρ = (F, P,O) is the frame of reference of the execution of a in (M, s) where F =
FD(a,M, s), P = PD(a,M, s), and O = OD(a,M, s).

Theorem 2. Assume that a is an ontic-action instance. It holds that:

48

1. for every agent x ∈ FD(a,M, s) and [a causes ` if ϕ] belongs to D, if (M, s) |= Bxϕ then
ΦD(a, (M, s)) |= Bx`;

2. for every agent y ∈ OD(a,M, s) and a belief formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |=
Byη;

3. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a belief formula η, if
(M, s) |= BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. Since a is executable in (M, s), we have that (M, s) |= ψ. This means that

ΦD(a, (M, s)) = (M, s)⊗(ω(a, ρ), {σ})

where (ω(a, ρ), {σ}) is given in Definition 13. Assume that (M ′, s′) ∈ ΦD(a, (M, s)). By Defini-
tion 6, we have s′ = (s, σ). Assume that the fluent in ` is p, i.e., ` = p or ` = ¬p.

1. Let Ψ+(p, a) =
∨
{ϕ | [a causes p if ϕ] ∈ D} and Ψ−(p, a) =

∨
{ϕ | [a causes ¬p if ϕ] ∈

D} and θ = Ψ+(p, a) ∨ (p ∧ ¬Ψ−(p, a)). By Definition 13, p→ θ ∈ sub(σ). Furthermore,
for every u′ ∈M ′[S] such that (s′, u′) ∈M ′[x], it holds that u′ = (u, σ) for some u ∈M [S],
(M,u) |= ψ, and (s, u) ∈ M [x]. Because (M, s) |= Bxϕ, we have that (M,u) |= ϕ.
Consider two cases:

• ` = p. Then, (M,u) |= Ψ+(p, a), and hence, (M,u) |= θ. So, M ′[π]((u, σ)) |= p.

• ` = ¬p. Then, because (M,u) |= ϕ, the consistency of D implies that (M,u) 6|= θ.
Therefore, M ′[π]((u, σ)) 6|= p, i.e., M ′[π]((u, σ)) |= ¬p.

Both cases imply that M ′[π]((u, σ)) |= `. This holds for every u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[x], which implies (M ′, s′) |= Bx`.

2. By the construction of M ′, we have the following observations:

• for every u ∈M [S] iff (u, ε) ∈M ′[S];

• for every z ∈ AG, (u, v) ∈M [z] iff ((u, ε), (v, ε)) ∈M ′[z]; and

• for every u ∈ M [S] and p ∈ F , M ′[π]((u, ε)) |= p iff (M ′, (u, ε)) |= p because
sub(ε) = ∅.

These observations allow us to conclude that for every formula η, (M,u) |= η iff
(M ′, (u, ε)) |= η.
Now, let us get back to the second item of the theorem. Consider u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[y]. This holds iff there exists u ∈M [S], (s, u) ∈M [y], and u′ = (u, ε).
Since (M,u) |= η iff (M ′, (u, ε)) |= η and this holds for every u′ ∈ M ′[S] such that
(s′, u′) ∈M ′[y], we have that (M, s) |= Byη iff (M ′, s′) |= Byη.

3. Consider u′, v′ ∈ M ′[S] such that (s′, u′) ∈ M ′[x] and (u′, v′) ∈ M ′[y]. This holds if there
exist u, v ∈M [S], (s, u) ∈M [x] and (u, v) ∈M [y] such that u′ = (u, σ) and v′ = (v, ε).
Assume that (M, s) |= BxByη. This implies that (M, v) |= η. The second item shows
that (M ′, (v, ε)) |= η, i.e., which implies (M ′, s′) |= BxByη. Since this holds for every
u′, v′ ∈M ′[S] such that (s′, u′) ∈M ′[x] and (u′, v′) ∈M ′[y], we have (M ′, s′) |= BxBy`.

49

Since (M ′, s′) is an arbitrary element in ΦD(a, (M, s)), the theorem holds. 2

Theorem 3. Let us assume that a is a sensing action instance and D contains the statement
a determines ϕ. It holds that:

1. if (M, s) |= ϕ then ΦD(a, (M, s)) |= CFD(a,M,s)ϕ;
2. if (M, s) |= ¬ϕ then ΦD(a, (M, s)) |= CFD(a,M,s)¬ϕ;
3. ΦD(a, (M, s)) |= CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ);
4. ΦD(a, (M, s)) |= CFD(a,M,s)(CPD(a,M,s)(CFD(a,M,s)ϕ ∨CFD(a,M,s)¬ϕ));
5. for every agent y ∈ OD(a,M, s) and formula η, ΦD(a, (M, s)) |= Byη iff (M, s) |= Byη;
6. for every pair of agents x ∈ FD(a,M, s) and y ∈ OD(a,M, s) and a formula η if (M, s) |=

BxByη then ΦD(a, (M, s)) |= BxByη.

Proof. We will prove the theorem for the case (M, s) |= ϕ. The proof of the theorem when
(M, s) |= ¬ϕ is similar and is omitted here. Since a is executable in (M, s), we have that (M, s) |= ψ.
This means that

ΦD(a, (M, s)) = M1[FD(a,M1, s), ϕ]⊗ (ω(a, ρ), {σ, τ})

where M1 = M [PD(a,M, s), ψ] and (ω(a, ρ), {σ, τ}) is given in Definition 14. Let us denote
M1[FD(a,M1, s), ϕ] with M∗. Observe that by the definition of M∗, for each x ∈ F there exists
some u ∈M∗[x] such that (M∗, u) |= ϕ and for each x ∈ P and there exists some u ∈M∗[x] such
that (M∗, u) |= ψ.

We need to prove Items 1, 3, 4, 5, and 6.
Assume that (M ′, s′) ∈ ΦD(a, (M, s)). By Definition 6, we have s′ = (s, σ).

1. Proof of the first item of the theorem.
To prove (M ′, s′) |= CFϕ, we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bikϕ

for any sequence i1, . . . , ik of agents in F , i.e., ij ∈ F for j = 1, . . . , k.
Let u′1, . . . , u

′
k+1 ∈M ′[S] such that (s′, u′1) ∈M ′[i1], (u′j, u

′
j+1) ∈M ′[ij+1] for j = 1, . . . , k.

Observe that for any x ∈ F and u′ ∈M ′[S] such that (s′, u′) ∈M ′[x], it holds that u′ = (u, σ)
for some u ∈M∗[S], (M∗, u) |= ψ ∧ ϕ, and (s, u) ∈M∗[x].
This observation allows us to conclude that, for u′1, . . . , u

′
k+1, there exist u1, . . . , uk+1 ∈

M∗[S] such that (s, u1) ∈M∗[i1], (uj, uj+1) ∈M∗[ij+1] for j = 1, . . . , k, and for every j =
1, . . . , k+ 1, u′j = (uj, σ) and ui |= ψ ∧ϕ. It is easy to see that this leads to (M ′, s′) |= CFϕ.

2. Proof of the third item of the theorem when (M, s) |= ϕ.
To prove (M ′, s′) |= CP (CFϕ ∨CF¬ϕ), we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bik(CFϕ ∨CF¬ϕ)

for any sequence i1, . . . , ik of agents in P , i.e., ij ∈ P for j = 1, . . . , k.
Let u′1, . . . , u

′
k+1 ∈M ′[S] such that (s′, u′1) ∈M ′[i1], (u′j, u

′
j+1) ∈M ′[ij+1] for j = 1, . . . , k.

Similar to the argument in the previous item and Definitions 6 and 14 allows us to con-
clude that, for u′1, . . . , u

′
k+1, there exist u1, . . . , uk+1 ∈ M∗[S] such that (s, u1) ∈ M∗[i1],

(uj, uj+1) ∈M∗[ij+1] for j = 1, . . . , k, and for every j = 1, . . . , k+1, either (a) u′j = (uj, σ)
and ui |= ψ ∧ ϕ or (b) u′j = (uj, τ) and ui |= ψ ∧ ¬ϕ. This leads to two cases:

50

(a) u′k+1 = (uk+1, σ) and uk+1 |= ψ ∧ ϕ. Then, similar to the proof in Item 1, we can show
that (M ′, u′k+1) |= CFϕ.

(b) u′k+1 = (uk+1, σ) and uk+1 |= ψ ∧ ¬ϕ. Again, similar to the proof in Item 1, we can
show that (M ′, u′k+1) |= CF¬ϕ.

The two cases imply that (M ′, s′) |= CP (CFϕ ∨CF¬ϕ).
3. Proof of the fourth item of the theorem when (M, s) |= ϕ.

To prove (M ′, s′) |= CF (CP (CFϕ ∨CF¬ϕ)), we need to show that

(M ′, s′) |= Bi1Bi2 . . .Bik(CP (CFϕ ∨CF¬ϕ))

for any sequence i1, . . . , ik of agents in F , i.e., ij ∈ F for j = 1, . . . , k. This holds because
we can show that for each u′ = (u, σ) such that u ∈M∗[S] and (M∗, u) |= ψ∧ϕ, (M ′, u′) |=
CP (CFϕ ∨CF¬ϕ). The arguments for this conclusion are similar to the arguments used in
the proof in Item 2.

4. The proof of the fifth and sixth items of this theorem is similar to the proof of the second and
third item of Theorem 2, respectively.

Since (M ′, s′) is an arbitrary element in ΦD(a, (M, s)), the theorem holds. 2

51

