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ABSTRACT

Current work in answer-set programming with regards to its application in the

development of reasoning agents has centered around single-agent systems. A well

established body of research showing its applicability towards such domains has

been developed, describing a thorough methodology for their development upon a

theoretical foundation. This work hopes to expand the applicability of this �eld to

the realm of multi-agent domains.

In this work we present a general framework for reasoning about cooperative

multi-agent systems. We begin with an overview of the current framework for

representing single-agent systems as well as the syntax and semantics of the logic

programming language CR-Prolog. Once this baseline has been established, we

extend the fundamental notion of an agent to facilitate communication via the

introduction of special named sets of uents known as requests. We then de�ne the

notions of an agent's local and global perspectives and their respective diagrams

which serve as the theoretical foundation of this work.

Once the general framework has been discussed, a motivating example of a sim-

ple multi-agent domain is presented. This example is used to develop a methodology

for representing agents capable of reasoning in such domains using the logic pro-

gramming language of CR-Prolog, together with an axiomatization of multi-agent

communication.

Finally a series of results detailing some fundamental properties of the framework

are presented.

viii
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CHAPTER 1

INTRODUCTION

1.1 RESEARCH GOALS

Current work in answer-set programming with regards to its application in the

development of reasoning agents has centered around single-agent systems. A well

established body of research showing its applicability towards such domains has

been developed describing a thorough methodology for their development upon a

theoretical foundation.

The goal of this research is to expand the current declarative frameworks used

for reasoning about domains containing a single agent to domains containing mul-

tiple agents in an attempt to answer the following question: \How do we develop

programs that may intelligently ask other programs to perform various tasks?" A

general framework for reasoning about multi-agent systems is presented, as well as

its application in the design and operation of a collaborative multi-agent domain.

We begin by extending our notion of what constitutes an agent. Previous work

on the development of single-agent systems largely abstracted out the means by

which an agent might communicate with the outside world. In order to accommo-

date the ability of agents to communicate between themselves, the de�nition of an

agent has been extended via the addition of named sets of uents known as requests.

Requests provide a language for communication between the agents that may be

present in a given system. Depending on the nature of the particular system being

represented, these requests may be used in the formation of messages which the

agents may pass between themselves.

Having established this basic building block, we then formalize the notion of a

multi-agent system as a set of agents which satis�es various properties. In general

1
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there are many types of multi-agent systems. Such systems may contain agents

which work independently, collaborate to achieve their goals, compete against each

other, or even contain a mixture of all three. This work will largely focus on

formalizing an agent's reasoning within a system in which the agents cooperate

in order to achieve their various goals. Such a system is called a collaborative

multi-agent system.

Once these basic notions have been introduced, a formalization of a class of

actions known as message passing actions is described. Depending on the particular

task at hand, an agent reasons about the e�ects of such actions from either a local

perspective, or a global perspective. These modes of reasoning are described by

an artifact called the communication module, which uses a combination of action

languages and logic programming under the answers-set semantics as its foundation.

The particular languages used are the action language AL, and the answer-set

programming language CR-Prolog.

The remainder of the introduction is organized as follows: a brief overview of

the action language AL will be presented, followed by a description of the syntax

and semantics of the relevant portion of CR-Prolog. Once this has been done,

a description of the current framework for modeling single-agent systems will be

given.

1.2 THE ACTION LANGUAGE AL

Briey stated, action languages are a class of declarative languages used for

describing the e�ects of actions. They have a simple syntax and semantics, and

yet remain powerful enough to represent many complex reasoning domains [1].

Collections of statements in an action language are termed action descriptions,

and de�ne transition diagrams whose nodes correspond to possible states of the

2
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world, and whose arcs are labeled by actions. Intuitively, an arc hσ, a, �σi states

that if action a occurs in state σ, the resulting state will be �σ. In addition to

specifying the e�ects of actions, it is necessary to specify what is left unchanged

by the occurrences of actions. This is known as the frame problem [13], and its

solution lies in an elegant and precise representation of the inertia axiom. The

beauty and utility of action languages stems from their ability to provide both a

concise representation of huge transition systems, and in their ability to gracefully

solve the frame problem.

Action descriptions of AL are comprised of collections of dynamic causal laws,

static causal laws, and impossibility conditions. Dynamic causal laws are statements

of the form:

a causes f if l0, . . . , ln

where a is an action and f and l0, . . . , ln are uent literals. Laws of this form are

read as \action a causes f to be true if l0, . . . , ln." The corresponding arc in the

transition diagram is as follows:

l0,...,ln
f,

l0,...,ln
a

Figure 1.1: transition de�ned by a simple causal law

Static causal laws have the form:

caused f if l0, . . . , ln

where f and l0, . . . , ln are uent literals. Static causal laws (also known as state

constraints) are read as: \f is true whenever l0, . . . , ln are true." Unlike dynamic

causal laws, state constraints de�ne properties of states, rather than the direct

3



Texas Tech University, Gregory Gelfond, May 2007

e�ects of an action. They may be used however to specify the indirect e�ects of

actions as in the following example:

Example 1.2.1. Consider the following action description, AD1:

AD1 =

 a causes f.

caused g if f.


and state σ = {¬f,¬g}. If a is executed in σ, we have the following transition:

¬f, ¬g f, ga

Figure 1.2: transition containing direct and indirect e�ects

Note that the value of f changes as a result of the dynamic causal law, but the value

of g changes due to the presence of the state constraint.

Impossibility conditions (also known as executability conditions) have the form:

a impossible if l0, . . . , ln

where as before, a is an action and l0, . . . , ln are uent literals. Rules such as this

are used to state that \action a may not occur if l0, . . . , ln are true." From the

standpoint of the transition system, such rules specify that an outgoing arc labeled

by a may not originate in a state that satis�es l0, . . . , ln.

The semantics of an action description of AL is given by its transition diagram.

For a detailed description of the semantics of AL, the reader is referred to [1].

1.3 CR-PROLOG

CR-Prolog is an extension of the logic programming language A-Prolog devel-

oped by Michael Gelfond and Vladimir Lifschitz in [11] which introduces the notion

4
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of consistency-restoring rules and the ability to assign preferences over them. When

taken together these new constructs allow for a more graceful handling of planning

and diagnosis. For a complete description of the syntax and semantics of CR-Prolog

the reader is referred to [2]. What follows is a description (taken in part from the

one presented in [10] with permission of the author) of those constructs which are

relevant to the work presented in this thesis. A program of this subset of CR-Prolog

is a collection of rules of the following form:

l0 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln

and

r : l0 or . . . or lk
+← lk+1, . . . , lm, not lm+1, . . . , not ln

where l0 . . . ln are literals, not is negation-as-failure (also known as default nega-

tion), and r is the name of a rule. Rules of the �rst form are termed regular rules,

and are read as: \if one has reason to believe in lk+1, . . . , lm, and no reason to

believe in lm+1, . . . , ln, then one must believe in one element of l0 . . . lk." Rules of

the second form are called consistency restoring rules, (also known as cr-rules), and

are read as \if one has reason to believe in lk+1, . . . , lm, and no reason to believe in

lm+1, . . . , ln, then one may possibly believe in one element of l0 . . . lk." In addition,

there is an underlying assumption that such rules are used as little as possible.

Having given an overview of the syntax of the language, a brief description of

its semantics is given. It should be noted that this discussion assumes that the

reader is familiar with the semantics of A-Prolog. Given a CR-Prolog program Π,

we denote the set of regular rules of Π by Πr. Similarly, the set of cr-rules of Π is

denoted by Πcr. In addition, let α(r) denote the regular rule obtain from the cr-rule

by replacing the symbol
+← with←. α is extended in a similar vein to apply to sets

of cr-rules.

5
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Definition 1.3.1 (abductive support). Given a CR-Prolog program Π, a minimal

(with respect to set theoretic inclusion) set R of cr-rules of Π, such that Πr [ α(R)

is consistent (i.e. has an answer set) is called an abductive support of Π.

Definition 1.3.2 (answer set of a CR-Prolog program). Given a CR-Prolog program

Π, a set of literals, A, is called an answer set of Π, if it is an answer set of a regular

program Πr [ α(R) for some abductive support R of Π.

Example 1.3.1. Consider the following CR-Prolog program:

Π1 =



p(X) ← not ab(X).

s(X) ← p(X), q(X).

r(X) : ab(X)
+← .

ab(1).

q(2).


Π1 includes a default with an exception, 1, a partial de�nition of s in terms of p

and q, and a consistency restoring rule which states that there may possibly be

unknown exceptions to the default. As the applicability of cr-rules is governed

by the assumption that such rules are used as little as possible, the cr-rule is not

applied, and Π1 has only a single answer set, namely {p(2), s(2), q(2), ab(1)}.

Now let us consider an example where the cr-rule is applicable.

6



Texas Tech University, Gregory Gelfond, May 2007

Example 1.3.2. Consider the program Π2 = Π1 [ {¬s(2)}.

Π2 =



p(X) ← not ab(X).

s(X) ← p(X), q(X).

r(X) : ab(X)
+← .

ab(1).

q(2).

¬s(2).


The addition of the fact ¬s(2) causes the cr-rule to become applicable, and conse-

quently Π2 has the answer set {¬s(2), q(2), ab(1), ab(2)}.

Before proceeding it must be noted that in order for Π1 and Π2 to be executable

under current inference systems such as crmodels [3], they must be suitably encoded

in an extension of the language of LParse [3, 14]. For an in-depth description of the

LParse system the reader is referred to [14]. The di�erences are largely cosmetic as

the following representation of Π2 demonstrates:

#const n = 2.

object(1..n).

#domain object(X).

p(X) :- not ab(X).

s(X) :- p(X), q(X).

r(X) : ab(X) +-.

ab(1).

q(2).

-s(2).

7
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The �rst three lines are used to specify the values over which the variable X ranges,

in this case the set {1, . . . , n} where n = 2. This information is necessary in order

for the system to automatically ground the rules and generate answer sets. All

subsequent program examples will be presented as runnable programs, i.e. in the

extended language of LParse.

1.4 MODELING SINGLE-AGENT SYSTEMS

Now that we have established some of the action language AL and CR-Prolog

we now proceed with a brief overview of the current approach towards modeling

single-agent systems. For a detailed account of how such systems are modeled the

reader is referred to [1, 7].

In general, the following assumptions are made when developing single-agent

systems [1]:

. The agent's environment can be represented as a transition diagram whose

states are sets of uents and whose arcs are labeled by actions.

. The agent is capable of making correct observations, performing actions, and

remembering the history of the domain.

These assumptions de�ne an agent as being comprised of three distinct components:

an action description, a set of observations, and a domain history. In order to per-

form actual reasoning tasks, these components are often described as logic programs

written in A-Prolog or one of its many variants. Each of these components is used

in various stages of what has been termed the agent-loop.

An agent begins by observing the state of the world around it. If these obser-

vations fail to match up with its expectations, the agent performs a step known

as diagnosis, in which it attempts to update its domain history in order to explain

8
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the discrepancies through the occurrence of exogenous actions (actions that are

not executed by the agent himself). Afterwards the agent selects a goal, and by

planning, constructs a sequence of actions to achieve its goal. Having done so, the

agent executes the �rst element of this sequence, and repeats the process.

Such systems have been used in many domains ranging from query answering

[6], to modeling complex ight control systems of the Space Shuttle [12]. These

systems do not model domains in which multiple agents may be operating however.

Such domains are quite common, and the extension of the current methodology for

developing single-agent systems to multi-agent domains is the focus of this work.

9
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CHAPTER 2

THE MULTI-AGENT FRAMEWORK

2.1 SYSTEMS OF AGENTS

When reasoning about systems which may contain many agents, there is gener-

ally an underlying assumption that agents may communicate amongst themselves.

Such communication is typically used by agents to ask others in the domain to per-

form various tasks. In order to accommodate the ability of agents to communicate,

the de�nition of an agent must be extended. This de�nition is extended by the

introduction of requests, which may be thought of as a language for communication

between the agents that may be present in a given system. Depending on the nature

of the domain being represented, these requests may be used in the formation of

messages which the agents may pass between themselves.

Definition 2.1.1 (agent). An agent, α, is de�ned as a 4-tuple hF,A, R, Di where:

. F is a set of uents.

. A is a set of elementary actions.

. R is a collection of named sets of uents from F known as requests.

. D is an action description in the language of AL with signature Σ = F [A.

Given an agent α, Fα denotes the set of α's uents, Aα denotes the set of α's actions,

etc.

Now that the notion of an agent has been de�ned, the notion of a multi-agent

system may be introduced.

Definition 2.1.2 (multi-agent system). A multi-agent system, M, is de�ned as a

�nite, non-empty set of agents such that:

10
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8α, β 2 M,Fα \ Fβ = ;∧ Aα \Aβ = ;.

On its surface, the condition that the agents of a multi-agent system have disjoint

sets of actions seems restrictive. This restriction can be overcome however by

associating an actor with each action. The restriction upon uents is in place for a

myriad of reasons, among them being a desire to have the agents be as independent

of each other as possible in order to preserve as much of the existing single-agent

framework as possible. While for some domains this restriction may be overly

restrictive, lifting this restriction raises a number of theoretical issues which are

outside the scope of this work. This is a syntactic restriction however, and it is still

possible to construct systems of homogenous agents.

In general there are many types of multi-agent systems. Such systems may

contain agents which work together to achieve their goals, compete against each

other, or even contain a mixture of collaborative and competitive agents. This

work will focus on collaborative multi-agent systems which are de�ned below:

Definition 2.1.3 (collaborative multi-agent system). A collaborative multi-agent

system, M, is de�ned as a multi-agent system, combined with the 3-tuple hC,S,Mi

where:

. C is a function which given an agent α and a request r 2 Rα, returns a set of

agents known as the clients of r.

. S is a function which given an agent α and a request r 2 Rα, returns a set of

agents known as the servers of r.

. M is a set of ordered pairs of the form hr, βi known as messages such that

β 2 M, r 2 Rα for some α 6= β 2 M, and β 2 S(α, r)

In addition to the above, C, S, and M must satisfy the following properties:

11
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. If β 2 C(α, r) then 8γ 2 M, β 62 S(γ, r).

. If β 2 C(α, r) then α 2 S(β, r).

. If β 2 S(α, r) then α 2 C(β, r).

2.2 AGENT COMMUNICATION

An agent's knowledge de�nes a pair of transition diagrams known as its local and

global diagrams. These diagrams are used by the agent to reason about its actions

from what are termed its local and global perspectives. These perspectives di�er

on how actions which involve message passing are handled. The communication

module will be discussed in detail in subsequent chapters, for the moment, su�ce

it to say that it is comprised of two sub-modules, the local module, Clocal, and

global module, Cglobal. Clocal is de�ned by an action description in the language

AL, while Cglobal is de�ned by a logic program in CR-Prolog.

2.2.1 THE LOCAL PERSPECTIVE

Consider the following simple scenario: \John wants to prepare for a trip. In

order to do so he must pack his bags and obtain a ticket. John has a secretary that

is able to obtain a ticket for him." How would John reason about preparing for

his trip? Assuming that John has a competent secretary it is reasonable to assume

that John's reasoning can be summarized as follows:

. John is ready when he has his tickets and is packed.

. Packing bags causes them to be packed.

. Having his secretary purchase tickets for him causes him to have tickets.

The �rst two statements can be captured by the following static and dynamic causal

laws of AL:

12
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caused ready if packed, ticket.

pack causes packed.

What about the last statement? Recall that when we are representing agents we

only represent their knowledge of the domain. John is not concerned with how his

secretary obtains the tickets. He only knows that when he has her purchase them,

he will have them. This line of reasoning can be captured by the following dynamic

causal law:

ask causes ticket.

This type of reasoning is termed reasoning from a local perspective. When

reasoning in this perspective an agent abstracts out all of the details concerning the

actions that other agents may take. The sole focus is how his requests a�ect his

own model of the world. This approach is generalized through the use of requests.

Recall that requests are named sets of uents. To make this law more general,

and therefore applicable to other commands that John may at some point issue to

his secretary, we introduce into our representation the request buy(ticket, john)

which contains the uent ticket. With the request in place, we can now represent

the �nal statement via the following dynamic causal law:

send(Request) causes Fluent if Fluent 2 Request.

This is precisely what the local communication module, Clocal accomplishes. In

this framework, the representation of John would be as follows:

. Fjohn = {ticket, packed, ready}.

. Ajohn = {pack}.

. Rjohn = {buy(ticket, john) = {ticket}}.

13
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. Djohn =

 caused ready if packed, ticket.

pack causes packed.


and the causal law:

send(Request) causes Fluent if Fluent 2 Request.

is part of Clocal.

When taken together Djohn and Clocal de�ne what is known as John's local

diagram.

Definition 2.2.1 (local diagram). Given an agent α, α's local diagram, Tlocal(α),

is the diagram de�ned by the action description Dα [ Clocal.

Example 2.2.1. Using our previous description of John, Djohn[Clocal is as follows:

Djohn [ Clocal =


caused ready if packed, ticket.

pack causes packed.

send(Request) causes Fluent if Fluent 2 Request.


Which gives the following local diagram for John:

packedpack

ticket

send

packed,
ticket,
ready

pack

sendsend, pack

Figure 2.1: local diagram for agent John
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2.2.2 THE GLOBAL PERSPECTIVE

As was mentioned earlier, an agent's local perspective is used by the agent to

reason about his own actions. The central idea is that when an agent reasons about

actions of type send, he operates under the assumption that issuing a request

causes the e�ect speci�ed by the request to materialize. Recall our characterization

of John's mental model:

. John is ready when he has his tickets and is packed.

. Packing bags causes them to be packed.

. Having his secretary purchase tickets for him causes him to have tickets.

This model is su�cient if John simply wants to reason about the e�ects of his own

actions. Suppose however that John wants to reason about how his actions may

actually play out. It is doubtful that John's secretary is capable of instantaneously

obtaining his tickets. Consequently John knows that he must wait for some un-

speci�ed period of time, depending on how many other tasks his secretary has to

perform. His new model is described as follows:

. John is ready when he has his tickets and is packed.

. Packing bags causes them to be packed.

. Issuing a request causes that request to become pending.

. If his request is satis�ed, its corresponding e�ect is satis�ed.

. Until his request is satis�ed John has to wait.

Notice that his models only di�er in how communication actions are handled. Build-

ing o� of the previous representation we represent the new knowledge as follows:
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send(Request) causes pending(Request).

pending(Request) triggers wait(Request).

wait(Request) causes satisfied(Request) or ¬satisfied(Request).

caused Fluent if satisfied(Request), Fluent 2 Request.

As with his local perspective, John is not concerned with the actual actions that

his secretary may perform to obtain his tickets. He does however need to understand

that he has to wait for her to get them. This type of reasoning is termed reasoning

from a global perspective. With the exception of the �rst and last statements, the

above rules are not expressible in AL. They are however easily represented in A-

Prolog (and hence in CR-Prolog), and their representation comprises the module

Cglobal.

When taken together Djohn and Cglobal de�ne what is known as John's global

diagram.

Definition 2.2.2 (global diagram). Given an agent α, α's global diagram, Tglobal(α),

is the transition diagram de�ned by the following logic program:

Πglobal(α) = Πα [ Πinertia [ Πeffects [ Πdefault [ Cglobal.

Where Πα is a logic program representation of the agent; Πinertia is a logic program

describing inertia; Πeffects is a logic program describing the general e�ects of actions;

and Πdefault is a logic program characterizing the behavior of default uents. These

extra modules will be presented in greater detail in subsequent chapters.

Example 2.2.2. Using our previous description of John, a high level presentation
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of Djohn [ Cglobal is given below:

Djohn[Cglobal =



caused ready if packed, ticket.

pack causes packed.

send(Request) causes pending(Request).

pending(Request) triggers wait(Request).

wait(Request) causes satisfied(Request) or ¬satisfied(Request).

caused Fluent if satisfied(Request), Fluent 2 Request.


Which describes the global diagram presented in �gure 2.2.2 (note that the notation

has been simpli�ed somewhat).

packed

pack

pending

wait

send

packed,
pending

send

send, pack pack, wait

satisfied,
ticket

wait

wait

packed,
satisfied,

ticket,
ready

wait

pack, wait
packed,
ticket,
ready

pack

Figure 2.2: global diagram for agent John

2.2.3 THE SYSTEM PERSPECTIVE

Every agent of a multi-agent system has its own local and global perspectives of

the domain that it uses to reason about the e�ects of its actions. If we take a step

back however, and look at the system of agents as a whole, the global perspectives

of the agents may be combined to form what is termed the system perspective,

characterized by the system diagram de�ned as follows:
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Definition 2.2.3 (system diagram of a collaborative multi-agent system). Given

a collaborative multi-agent system, M, M's system diagram, Tsystem(M), is the

transition diagram de�ned by the following logic program:

Πsystem(M) = ( [
α2M

Πα) [ Πinertia [ Πeffects [ Πdefault [ Cglobal.

The system diagram is used to describe the behavior of a multi-agent system as

a whole, showing the interactions of all the agents of the system. This diagram is

used primarily in diagnosis (where it plays the same role as the actual transition

diagram mentioned in [4]), and in analyzing the properties of a given multi-agent

system. These topics will be revisited in subsequent chapters.

2.3 THE MULTI-AGENT LOOP

Recall that in the current research on single-agent systems, an agent's behavior

is characterized by what has been termed the agent-loop [1] (also known as the

observe-think-act loop). To recap, the agent loops through the following general

steps:

. observe the state of the world

. if these observations fail to match up with the agent's expectations, identify

the reason for the discrepancy

. select a goal

. generate a sequence of actions to achieve the goal

. execute the �rst element of the sequence

In our framework for multi-agent systems the structure of the loop remains un-

changed. What does change is how the agent performs the steps of planning and

diagnosis. This is where local and global perspectives play a vital role.

18



Texas Tech University, Gregory Gelfond, May 2007

In the single-agent version of the loop, planning is reduced to �nding a path from

the agent's current/initial state to a goal state in the agent's transition diagram.

This basic template is observed in our framework as well, except that path generated

is from the agent's local diagram, rather than the diagram described by the agent's

action description.

Example 2.3.1. Recall that our previous description of John, yielded the local

diagram described in �gure 2.2.1. Suppose that John has the goal of becoming

ready. During the planning phase of the multi-agent loop John could generate the

following trajectory, π as a possible plan:

packedpack
packed,
ticket,
ready

send

Figure 2.3: possible plan, π, for achieving ready

Once the agent has generated a plan, the agent uses its global diagram to gen-

erate a sequence of actions describing how execution of its plan may play out in the

presence of other agents. This sequence forms the agent's expectations concerning

the results of its actions, and is captured by the notion of an expansion of a path.

Definition 2.3.1 (expansion of a transition). Let τ = hσ, a, �σi be a transition in

Tlocal(α) for some agent α. The expansion of τ in Tglobal(α), denoted by �τ, is de�ned

as follows:

. If a \Aα = a, then �τ is a transition hδ, �a, �δi 2 Tglobal(α) where σ � δ, �σ � �δ,

and a � �a, where �a \ a = ;, or �a \ a only contains actions of type wait.

. If a contains an action of type send whose corresponding message is m, �τ is

a path in Tglobal(α) of the form:
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hδ, �a, δ0, a0, . . . , an, �δi

where a0, . . . , an are actions of type wait whose corresponding message is m,

and σ � δ, �σ � �δ, and a � �a.

Definition 2.3.2 (expansion of a path). Let π = hσ1, a1, σ2, a2, . . . , an, σni be a

path in Tlocal(α) for some agent α. The expansion of π in Tglobal(α), is any path

�π = β � γ 2 Tglobal(α) such that:

. β is an expansion of hσ1, a1, σ2i whose �nal state is δ2

. γ is an expansion of hσ2, a2, . . . , an, σni whose initial state is δ2

Example 2.3.2. Given the possible plan from example 2.3.1, John could use the

following expansion to form his expectations of how the plan might actually be

realized:

packed
packed,
pending

send

wait

packed,
satisfied,

ticket,
ready

waitpack

Figure 2.4: an expansion of π from example 2.3.1

The relationship between plans and their expansions will be discussed in subse-

quent chapters.
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CHAPTER 3

REPRESENTING SYSTEMS OF AGENTS

Having established the basic framework for reasoning about multi-agent sys-

tems, we can focus our attention on the process of representing such a system in

a logic programming language. As a guiding example we consider a simple multi-

agent system consisting of two agents: John and his secretary. John is able to pack

his bags, and have his secretary purchase tickets for him. To get ready for a trip

he needs to have packed and to have obtained a ticket. John's secretary purchases

tickets online by logging onto a computer and performing a transaction. We will

begin our discussion by modeling John. As we are not using a formal action lan-

guage in our framework, the translations presented in the subsequent sections are

necessarily informal.

3.1 PURCHASING TICKETS: MODELING JOHN

From the above description we know the following about John:

1. he is able to pack his bags

2. he is able to have his secretary buy tickets for him

3. if he is both packed and has a ticket he is ready for a trip

The �rst item tells us that John has a single non-communication action (packing

his bags), while the second states that he is able to send a message to a secretary

with the associated request of purchasing a ticket. Furthermore, we know that John

is aware of several uents, namely: being packed, having a ticket, and being ready.

Consequently, we describe the agent John as follows:

. Fjohn = {ticket, packed, ready}.
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. Ajohn = {pack}.

. Rjohn = {buy(ticket, john) = {ticket}}.

. Djohn de�nes the following local diagram:

packedpack

ticket

send

packed,
ticket,
ready

pack

sendsend, pack

Figure 3.1: local diagram for agent john

In the following sections we describe in detail a representation of John's knowl-

edge in CR-Prolog.

3.1.1 DOMAIN SPECIFIC KNOWLEDGE

In this section we represent the portion of John's knowledge of the world that is

domain-speci�c, yet independent of other agents, i.e. his knowledge of uents, and

actions which do not involve message passing.

3.1.1.1 OBJECTS OF THE DOMAIN

When de�ning an agent that operates in a multi-agent system, we begin by

introducing the various objects of the domain. John is aware of himself (as an

agent of the domain), time, and tickets. In addition John is aware of the boolean

values true and false. This information is encoded below:

#const maxTime = 3.
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agent(john).

time(0..maxTime).

object(ticket).

boolean(true).

boolean(false).

#domain time(T).

#domain agent(Agent).

#domain object(Object).

#domain boolean(Value).

#domain boolean(Value1).

#domain boolean(Value2).

In addition, John is aware of the following properties:

property(packed).

property(ready).

property(possessionOf(Object)).

#domain property(Property).

Properties denote attributes that an agent may have. Speci�cally, John may have

the property of being packed, ready, or having possession of an object (possessionOf).

3.1.1.2 FLUENTS AND ACTIONS

Having introduced the objects of the domain it is now possible to describe the

uents that John is aware of, and the actions that he may perform. Note that here

we are only describing actions which do not involve communication between agents.

John is aware of only one type of uent: has(Agent, Property). Fluents of this

form are used to specify that an agent has some speci�c property. For example,
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has(john, possessionOf(ticket)) is read as: \John has possession of a ticket," and

has(john, packed) has the informal reading of \John has the property of being

packed." Fluents of this form are considered to be inertial. This information is

encoded in CR-Prolog below:

inertialFluent(has(Agent,Property)).

#domain inertialFluent(InertialFluent).

fluent(InertialFluent).

#domain fluent(Fluent).

Actions are de�ned as named records consisting of the following �elds:

. action(Name) - denotes the name of the action

. type(Name, Type) - denotes the type of the action

. actor(Name, Agent) - denotes the agent performing the action

. effect(Name, Fluent, Value) - denotes the e�ect of the action in terms of

assigning a value to a uent.

If an action has more than one e�ect, then the record contains multiple entries of

the form effect(Name, Fluent, Value). The names of actions are parameterized

by the actor. This ensures that if the names of the agents in a particular domain

are unique, the names of their actions will be unique as well. As an additional

note, facts of the form h(Fluent, Time) are used to specify that the given uent is

true at the a particular time. Similarly, facts of the form −h(Fluent, Time) state

that the given uent does not hold at the given time. As an example, the fact

h(has(john, packed), 0) is read as: \John is initially packed."

As John has a single action that does not involve message passing (packing his

bags), only one action is speci�ed below:
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action(pack(john)).

type(pack(john),pack).

actor(pack(john),Agent).

effect(pack(john),has(john,packed),true).

#domain action(Action).

In addition, we introduce the following executability condition: \agents do not

repack their bags." This rule is presented below:

-o(Action,T) :-

type(Action,pack),

actor(Action,Agent),

h(has(Agent,packed),T).

The rules which govern when an action's e�ects take hold are discussed in subse-

quent sections as they are domain independent and are part of a separate module.

3.1.2 DEPENDENT KNOWLEDGE

Having described the portion of an agent's domain-speci�c knowledge which

is independent of other agents in the domain, we now describe the portion of his

knowledge that deals with communication. This is done by expanding his knowledge

of the objects in the domain to include other agents, and by introducing two new

classes of objects known as requests and messages.

3.1.2.1 OBJECTS OF THE DOMAIN

We �rst expand John's knowledge of the agents in the domain. This is accom-

plished by simply adding the following fact to John's knowledge base:

agent(secretary).
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#domain agent(Agent1).

#domain agent(Agent2).

As was mentioned previously, requests are named sets of uents that are used

to de�ne an interface for communication between agents. These correspond to the

names of tasks that other agents may perform. In this particular example, John

only has a single type of request that he may issue namely, buy(Object,Agent),

read as \buy the given object for the speci�ed agent." Requests are declared as

follows:

request(buy(Object,Agent)).

#domain request(Request).

mapsTo(john,buy(Object,Agent),has(Agent,possessionOf(Object)),true).

The relation mapsTo is used to specify the set of uents literals that the request

represents. In this case, the request buy(Object,Agent) in John's knowledge base

is mapped onto the uent has(Agent, possessionOf(Object)). The third param-

eter speci�es the value that is to be assigned to the uent when the request is

satis�ed (more on this later).

Once an agent's requests have been declared, we can de�ne the relationships

between agents in terms of these requests. Speci�cally we need to specify which

agents can make requests, and which agents satisfy these requests. This is done by

specifying the client/server relationships between agents and the various requests

as shown below:

clientOf(john,buy(Object,Agent)).

serverOf(secretary,buy(Object,Agent)).

The �rst rule states that John is able to issue requests of the given form, while the

second states that the secretary is able to satisfy such requests.
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Having de�ned John's requests, we now turn our attention to the messages he

may send. Messages, like actions, are represented as named records consisting of

the following �elds:

. message(Name) - denotes the name of the message.

. task(Name, Request) - denotes the request passed by the message

. receiver(Name, Agent) - denotes the agent who is a recipient of the message

The names of message are parameterized by the sender. As with actions, this will

ensure that if the names of agents in a particular domain are unique, the names

names of their messages will be unique as well.

John's message to his secretary requesting that she purchase a ticket for him is

encoded as follows:

message(msg1(john)).

task(msg1(john),buy(ticket,john)).

receiver(msg1(john),secretary).

#domain message(Message).

3.1.2.2 SPECIFYING COMMUNICATION ACTIONS

Once the basic objects of the domain have been extended by requests and mes-

sages, we now specify the agent's communication actions. As with his regular

actions, such actions are represented as named records having the following �elds:

. action(Name) - denotes the name of the action

. type(Name, Type) - denotes the type of the action

. actor(Name, Agent) - denotes the agent performing the action
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. sent(Name, Message) - denotes the message sent by an occurrence of the

action

. effect(Name, Fluent, Value) - denotes the e�ect of the action in terms of

assigning a value to a uent

Unlike regular actions however, communication actions must have the type send,

and are only partly de�ned in the module pertaining to an agent. The e�ects of

such actions are speci�ed in the logic program representations of Clocal and Cglobal.

The names of such actions are parameterized by both the actor and the message

sent in order to ensure that their names are unique.

John's action of sending a message is given below:

action(send(john,Message)).

type(send(john,Message),send).

actor(send(john,Message),john).

sent(send(john,Message),Message).

#domain action(Action).

3.2 PURCHASING TICKETS: MODELING THE SECRETARY

We continue our discussion by modeling the secretary. Let us begin by recalling

the scenario: John is able to pack his bags, and have his secretary purchase tickets

for him. To get ready for a trip he needs to have packed and to have obtained a

ticket. John's secretary purchases tickets online by logging onto a computer and

performing a transaction. Given this description, we know the following about

John's secretary:

. she is able to login to a computer

. once she is logged on to a computer she is able to purchase tickets
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. she purchases tickets by completing a transaction

From this description we can see that all of the secretary's actions do not involve

communication. In addition, we know that she is capable of satisfying John's re-

quest to purchase a ticket. As a result, we know that she is aware of several uents,

namely: being online (logged on), and having successfully purchased the tickets.

Consequently, we describe the secretary as follows:

. Fsecretary = {online, ticket}.

. Asecretary = {login, buy}.

. Rsecretary = {buy(ticket, john) = {ticket}}.

. Dsecretary de�nes the following local diagram:

onlinelogon
online,
ticket

buy

Figure 3.2: local diagram for agent secretary

In the following sections we describe in detail a representation of the secretary's

knowledge in CR-Prolog.

3.2.1 DOMAIN SPECIFIC KNOWLEDGE

In this section we represent the portion of the secretary's knowledge of the

world that is domain-speci�c, yet independent of other agents, i.e. her knowledge

of uents, and actions which do not involve message passing.
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3.2.1.1 OBJECTS OF THE DOMAIN

As with our representation of John, we being by introducing the various objects

of the domain. The secretary is aware of herself (as an agent of the domain), time,

and tickets. In addition she is aware of the boolean values true and false. This

information is encoded below:

#const maxTime = 3.

agent(john).

time(0..maxTime).

object(ticket).

boolean(true).

boolean(false).

#domain time(T).

#domain agent(Agent).

#domain object(Object).

#domain boolean(Value).

#domain boolean(Value1).

#domain boolean(Value2).

In addition, the secretary is aware of the following properties:

property(online).

property(received(Object)).

#domain property(Property).

As was mentioned previously, properties denote attributes that an agent may have.

Speci�cally, the secretary may have the property of being online, or having received

of an object (received). Ideally we would use di�erent variables when describing

John's secretary, however due to programmatic necessity we use the same variables
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in order to combine the modules together smoothly. When more modular answer

set solver appear however this will no longer be necessary.

3.2.1.2 FLUENTS AND ACTIONS

Having introduced the objects of the domain it is now possible to describe

the uents that the secretary is aware of, and the actions that she may perform.

Note that here we are only describing actions which do not involve communication

between agents.

John's secretary is aware of only one type of uent, namely has(Agent, Property).

As with John, uents of this form are used to specify that an agent has some spe-

ci�c property. For example, has(secretary, online) is read as: \the secretary is

online," and has(secretary, recieved(ticket)) has the informal reading of \the sec-

retary has received a ticket." Fluents of this form are considered to be inertial and

are encoded in CR-Prolog below:

inertialFluent(has(Agent,Property)).

#domain inertialFluent(InertialFluent).

fluent(InertialFluent).

#domain fluent(Fluent).

Notice that because the secretary is aware of a di�erent set of properties from John,

the restriction that the agents of our system have disjoint sets of uents is preserved.

When representing the secretary's actions we again use named records as the

basis of our representation. John's secretary is speci�ed as having two types of

actions, that of logging onto a computer, and purchasing an object for some agent

online. These are represented as follows:

action(login(secretary)).
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type(loginlogin(secretary),login).

actor(login(secretary),secretary).

effect(login(secretary),has(secretary,online),true).

action(buy(secretary,Object,Agent)).

type(buy(secretary,Object,Agent),buy).

actor(buy(secretary,Object,Agent),secretary).

effect(buy(secretary,Object,Agent),has(Agent,received(Object)),true).

#domain action(Action).

Along with these actions come a pair of executability conditions restriction their

execution:

-o(Action,T) :-

type(Action,login),

actor(Action,Agent),

-h(has(Agent,online),T).

-o(Action,T) :-

type(Action,buy),

actor(Action,Agent),

-h(has(Agent,online),T).

The �rst rule states that an agent may not login to a computer if that agent is

already online, and the second speci�es that an agent may not purchase an object

if that agent is not online.
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3.2.2 DEPENDENT KNOWLEDGE

Having described the portion of the secretary's domain-speci�c knowledge which

is independent of other agents in the domain, we now describe the portion of her

knowledge that deals with communication. As before, this is accomplished by

expanding her knowledge of the objects in the domain to include other agents, and

by introducing any and all requests and messages.

3.2.2.1 OBJECTS OF THE DOMAIN

We �rst expand the secretary's knowledge of the agents in the domain. This is

accomplished by simply adding the following fact (and associated variable declara-

tions) to her knowledge base:

agent(john).

#domain agent(Agent1).

#domain agent(Agent2).

As was mentioned previously, requests are named sets of uents that are used to

de�ne an interface for communication between agents. John's secretary is aware of

a single type of request, buy(Object,Agent), for which she happens to be a server.

As with John, the same general representation is used to describe her knowledge of

requests:

request(buy(Object,Agent)).

#domain request(Request).

clientOf(john,buy(Object,Agent)).

serverOf(secretary,buy(Object,Agent)).

mapsTo(secretary,buy(Object,Agent),has(Agent,received(Object)),true).

Notice that the secretary maps the request buy(Object,Agent) onto the uent

has(Agent, received(Object)) whereas John maps the the request onto the uent
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has(Agent, possessionOf(Object)). This is by design, as each agent in the domain

is intended to have his own view of the world. Through this clean partitioning of the

world-views of agents we can develop the agents in isolation, and simply combine

them to form a multi-agent domain.

The secretary herself has no communication actions, and consequently no mes-

sages, and no actions of the type send need to be speci�ed. For convenience how-

ever, the following message is added from the logic program representing John, to

enable the secretary to be run independently of the full representation of John:

message(msg1(john)).

task(msg1(john),buy(ticket,john)).

receiver(msg1(john),secretary).

#domain message(Message).

The remaining sections will present the representations of Clocal and Cglobal,

as well as other domain independent modules, namely those dealing with default

uents and inertia.

3.3 GENERAL KNOWLEDGE

Now that we have represented John's domain-speci�c knowledge, we present

those portions of his knowledge which are domain-independent. This knowledge

is presented in the form of various logic programs, which are to be thought of as

part of a general library of knowledge. These modules include both the local and

global communication modules, as well as modules describing inertia, the e�ects of

actions, and the behaviors of default uents, etc.
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3.3.1 THE COMMUNICATION MODULE: Clocal

Recall that the local communication module, Clocal, is used to de�ne an agent's

local diagram. As was mentioned previously, when an agent reasons in his local

perspective, his model of the e�ects of message passing actions is governed by the

following dynamic causal law:

send(Request) causes Fluent if Fluent 2 Request.

The e�ect of such actions in an agent's local perspective as described by the causal

law above is represented in CR-Prolog by the following rule:

effect(Action,Fluent,Value) :-

type(Action,send),

actor(Action,Agent),

sent(Action,Message),

task(Message,Request),

mapsTo(Agent,Request,Fluent,Value).

In addition, we introduce a pair of executability conditions governing when such

actions may be executed. Taken together, these rules may be read as: \an agent

does not issue a request, if the desired e�ect is already in place."

-o(Action,T) :-

type(Action,send),

h(Fluent,T),

effect(Action,Fluent,true).

-o(Action,T) :-

type(Action,send),
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-h(Fluent,T),

effect(Action,Fluent,false).

These conditions are added to prevent an agent from making redundant requests,

such as John asking his secretary to purchase tickets if he already has them.

3.3.2 THE COMMUNICATION MODULE: Cglobal

Having described Clocal, we now turn our attention to the global communication

module, Cglobal which de�nes an agent's global diagram. The causal statements

presented in this module are de�ned in terms of the uents pending, and satisfied,

whose behaviors vary depending on whether the agent in question is a client or a

server of a particular request. We begin our representation by introducing these

uents:

defaultFluent

(

pending(perspective(Client),Client,Server,Request);

satisfied(perspective(Client),Client,Server,Request)

) :-

clientOf(Client,Request),

serverOf(Server,Request).

#domain defaultFluent(DefaultFluent).

defaultsTo(DefaultFluent,false).

fluent(DefaultFluent).
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inertialFluent

(

pending(perspective(Server),Client,Server,Request);

satisfied(perspective(Server),Client,Server,Request)

) :-

clientOf(Client,Request),

serverOf(Server,Request).

The use of the semi-colon in the above rules is a convenient notation for specify-

ing a list of elements. The �rst rule speci�es that both pending and satisfied

are considered to be default uents when the body of the rule is satis�ed. Simi-

larly, the second speci�es that both pending and satisfied are considered to be

inertial when the body of the rule is speci�ed. Notice that from the perspective

of a client these uents are default uents, whose value defaults to false. This

stems from our intuition that such uents are only \active" (have a value of true)

from the point at which an agent issues the request, until the request becomes ful-

�lled. Another way to view this is that if no requests are ever issued, they may

never be pending, and similarly never become satis�ed. However, once a client's

request becomes pending it remains so until the request becomes satis�ed, at which

point it returns to it's default value. The client himself however does not a�ect

the value of these uents. Such uents are only changed indirectly through the

actions of some other agent in the domain. From the perspective of a server how-

ever, these uents are considered to be inertial, due to the fact that the actions

of the server a�ect these uents directly. It is also worth noting that the u-

ents have been expanded by additional parameters. A uent literal of the form

pending(perspective(Client), Client, Server, Request) has the informal reading

of \from the perspective of the client, the client's request to the given server is
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pending." Similarly for the uent satisfied.

The behavior of these uents is captured in part by a collection of state con-

straints. The �rst pair of state constraints governs the behavior of these uents

from the perspective of a client agent. Taken together, they represent the idea that

if a request is pending, it remains so until it becomes satis�ed.

h(pending(perspective(Client),Client,Server,Request),T + 1) :-

-h(satisfied(perspective(Client),Client,Server,Request),T + 1),

h(pending(perspective(Client),Client,Server,Request),T).

-h(pending(perspective(Client),Client,Server,Request),T) :-

h(satisfied(perspective(Client),Client,Server,Request), T).

The next pair of rules rule links together the world-views of the client and server by

stating that if a request is pending from the client's perspective, it is also pending

in the world-view of its respective server. Similarly, if a server views a request as

satis�ed, then the client views the request as being satis�ed as well.

h(pending(perspective(Server),Client,Server,Request),T) :-

h(pending(perspective(Client),Client,Server,Request),T).

h(satisfied(perspective(Client),Client,Server,Request),T) :-

h(satisfied(perspective(Server),Client,Server,Request),T).

The next state constraint speci�es that if a server has satis�ed a request, that

request is no longer pending:

-h(pending(perspective(Server),Client,Server,Request),T) :-

h(satisfied(perspective(Server),Client,Server,Request),T).
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The next grouping of rules de�ne when a request is viewed as satis�ed by a server.

A request is said to be satis�ed if it was previously pending, and the uent that

the request speci�es is satis�ed. In addition, while a particular request is pending,

it is not considered to be satis�ed.

h(satisfied(perspective(Server),Client,Server,Request),T + 1) :-

h(pending(perspective(Server),Client,Server,Request),T),

h(Fluent,T + 1),

mapsTo(Server,Request,Fluent,true).

h(satisfied(perspective(Server),Client,Server,Request),T + 1) :-

h(pending(perspective(Server),Client,Server,Request),T),

-h(Fluent,T + 1),

mapsTo(Server,Request,Fluent,false).

-h(satisfied(perspective(Server),Client,Server,Request),T) :-

h(pending(perspective(Server),Client,Server,Request),T).

Now that we have discussed the behaviors of the uents pending and satisfied,

we can now de�ne how client agents reason about communication actions. When

reasoning from his global perspective, a client's model of the e�ects of message

passing actions is governed by the following causal statements:

send(Request) causes pending(Request).

pending(Request) triggers wait(Request).

wait(Request) causes satisfied(Request) or ¬satisfied(Request).

caused Fluent if satisfied(Request), Fluent 2 Request.
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Due to our choice of using named records as the basis of our representation of

an agent's action, the causal statement:

send(Request) causes pending(Request).

is represented as follows:

effect(Action,pending(perspective(Client),

Client,Server,Request),true) :-

type(Action,send),

actor(Action,Client),

sent(Action,Message),

receiver(Message,Server),

task(Message,Request).

Before we represent the second statement, we must �rst introduce actions of

type wait. Such actions are again represented as named records consisting of the

following �elds:

. action(Name) - denotes the name of the action

. type(Name, Type) - denotes the type of the action

. actor(Name, Agent) - denotes the agent performing the action

. msg(Name, Message) - denotes the message for whose task the agent is

waiting to become satis�ed

The names of such actions are parameterized by both the actor, and the message

in question. As before, this is to ensure that the names of such actions are unique

provided that the names of agents and messages in the given domain are unique as

well. Such actions are represented in a domain independent fashion as follows:
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action(wait(Agent,Message)) :-

task(Message,Request),

clientOf(Agent,Request).

type(wait(Agent,Message),wait).

actor(wait(Agent,Message),Agent).

msg(wait(Agent,Message),Message).

In addition, we introduce the following executability conditions to help govern a

clients reasoning regarding the applicability of actions of type send and wait:

-o(Action,T) :-

h(pending(perspective(Client),Client,Server,Request),T),

type(Action,send),

actor(Action,Client).

-o(Action,T) :-

h(Fluent,T),

type(Action,send),

actor(Action,Client),

sent(Action,Message),

task(Message,Request),

mapsTo(Agent,Request,Fluent,true).

-o(Action,T) :-

-h(Fluent,T)

type(Action,send),

actor(Action,Client),

sent(Action,Message),
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task(Message,Request),

mapsTo(Agent,Request,Fluent,false).

-o(Action,T) :-

-h(pending(perspective(Client),Client,Server,Request),T),

type(Action,wait),

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),

task(Message,Request).

Taken together these constraints state that an agent does not issue any requests if

the desired e�ect of the request is already satis�ed, and that an agent does not wait

for a request to become satis�ed unless that request is currently pending.

Having introduced the required actions, we can now represent the following

statements:

wait(Request) causes satisfied(Request) or ¬satisfied(Request).

pending(Request) triggers wait(Request).

as follows (note that in the extended language of LParse, | takes the place of or):

h(satisfied(perspective(Client),Client,Server,Request),T + 1) |

-h(satisfied(perspective(Client),Client,Server,Request),T + 1) :-

o(Action,T),

type(Action,wait),

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),
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task(Message,Request).

o(Action,T) :-

h(pending(perspective(Client),Client,Server,Request),T),

type(Action,wait),

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),

task(Message,Request).

The �nal statement:

caused Fluent if satisfied(Request), Fluent 2 Request.

Is represented as by the following pair of rules:

h(Fluent,T) :-

h(satisfied(perspective(Client),Client,Server,Request),T),

mapsTo(Client,Request,Fluent,true).

-h(Fluent,T) :-

h(satisfied(perspective(Client),Client,Server,Request),T),

mapsTo(Client,Request,Fluent,false).

3.3.3 EFFECTS OF ACTIONS

Recall that actions were represented as named records consisting of a number of

�elds. Using such a representation for actions allows us to encode the rules which

apply their e�ects in a general manner. Taken together, the following two rules may

be read as: \if the e�ect of an action is to assign some value to a uent, then an
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occurrence of that action causes the uent to have that value." As was mentioned

earlier, this module is denoted by Πeffects.

h(Fluent,T + 1) :-

o(Action,T),

effect(Action,Fluent,true).

-h(Fluent,T + 1) :-

o(Action,T),

effect(Action,Fluent,false).

3.3.4 THE INERTIA AXIOMS

As was mentioned previously in the introduction, the inertia axioms present an

elegant solution to the frame problem. Taken together, the following two rules may

be read as: \the value of an inertial uent remains unchanged unless we have reason

to believe otherwise." From here on this module will be referred to as Πinertia.

h(InertialFluent,T + 1) :-

h(InertialFluent,T),

not -h(InertialFluent,T + 1).

-h(InertialFluent,T + 1) :-

-h(InertialFluent,T),

not h(InertialFluent,T + 1).

3.3.5 DEFAULT FLUENTS

Finally we need to specify the behaviors of default uents. The behavior of such

uents is given by a pair of rules which when taken together are read as: \if a uent
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defaults to some value, then it has that value unless otherwise speci�ed." As was

alluded to previously, this module is denoted by Πdefault.

h(DefaultFluent,T) :-

defaultsTo(DefaultFluent,true),

not -h(DefaultFluent,T).

-h(DefaultFluent,T) :-

defaultsTo(DefaultFluent,false),

not h(DefaultFluent,T).

Now that we have seen how to describe multi-agent systems in CR-Prolog, we

demonstrate how these various modules may be combined to de�ne the various

diagrams present in the system.

Example 3.3.1. Suppose that we know that John's bags are initially unpacked,

that he does not have a ticket, and that he sets about packing his bags. We can

determine the possible successor states in John's local diagram as follows:

1. represent what is known about his current state as a logic program Πscenario

2. compute the answer sets of Π[Clocal [ Πeffects [ Πinertia [ Πdefault [ Πscenario

The �rst step is accomplished by the following CR-Prolog representation of the

scenario (the last two statements simply trim the output of the answer set solver

to make it readable):

-h(has(john,packed),0).

-h(has(john, possessionOf(ticket)), 0).

o(pack(john),0).

#hide.
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#show h(X,Y).

#show o(X,Y).

The second step is accomplished by using the CRModels, and MKatoms systems

[3] as shown by the following command (note that the names of the modules would

be replaced by the names of the corresponding �les):

crmodels -m 0 Π, Clocal, Πeffects, Πinertia, Πdefault, Πscenario

whose single answer set is given below:

h(has(john,packed),1)

-h(has(john,ready),1)

-h(has(john,possessionOf(ticket)),1)

o(pack(john),0)

and corresponds to the following transition in John's local diagram:

packedpack

Figure 3.3: path π from Tlocal(John)
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CHAPTER 4

PROPERTIES OF THE FRAMEWORK

The aforementioned logic programs are used in part to de�ne an agent's local and

global diagrams. In this chapter we discuss the properties of multi-agent systems

that are reected in various characteristics of these diagrams.

4.1 FEASIBILITY OF PLANS

As was mentioned previously, once an agent selects a goal he then uses his local

perspective to determine a plan which will achieve it. Later he uses his global

perspective to determine how his plan may play out in the domain by determining

its possible expansions. Is this always possible however? Do paths in an agent's

local diagram always have expansions in the global diagram? In this section we

show that this is the case, that paths of an agent's local diagram are guaranteed to

have at least one expansion in the agent's global diagram.

We begin by showing that states of an agent's local diagram may be extended

to obtain states in the agent's global diagram. The logic programs referenced in

the proofs that follow may be found in the appendix.

Lemma 4.1.1. Let α be an agent, and let σ be a state of Tlocal(α). Then there

exists a state δ 2 Tglobal(α) such that σ � δ.

Proof of Lemma 4.1.1: Let α be an agent, and let σ be a state of Tlocal(α). Let

us show that δ = σ[ {¬pending,¬satisfied} is a state of Tglobal(α). By de�nition

of a global diagram [de�nition 2.2.2], we need to show that:

. Π = Πglobal(α) [H(δ, 0) has an answer set X.

. δ = {f : h(f, 0) 2 X} [ {¬f : ¬h(f, 0) 2 X}.
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Before we begin, let H(s, i) denote {h(f, i) : f 2 s} [ {¬h(f, i) : ¬f 2 s}, and let

X = Statics(Πglobal(α)) [H(δ, 0) [H(δ, 1) [Obase [Ocomm where:

. Statics(Πglobal(α)) is the set of all static rules of Πglobal(α).

. Obase = {¬o(A, T)} such that 9 a rule r 2 Πα for which ¬o(A, T) = head(r)

and body(r) � Statics(Πglobal(α)) [H(δ, 0) [H(δ, 1).

. Ocomm = {¬o(A, T)} such that 9 a rule r 2 Cglobal for which ¬o(A, T) =

head(r) and body(r) � Statics(Πglobal(α)) [H(δ, 0) [H(δ, 1).

First, let us show that X is an answer set of Π. Note that ΠX = Πα
X [ H(δ, 0) [

H(δ, 1) [ Πinertia
X [ Πdefault

X [ Runsatisfied where:

. Πinertia
X has the form: {h(IF, 1)← h(IF, 0)}[ {¬h(IF, 1)← ¬h(IF, 0)} where IF

is an inertial uent in X.

. Πdefault
X = {¬h(DF, T) ← defaultsTo(DF, false)} if DF is a default uent

such that h(DF, 0) 62 X.

. Runsatisfied is the remaining set of rules whose bodies are not satis�ed by X.

To show that X is closed under the rules of ΠX, let us consider an answer set

Y of Φ = Πlocal(α) [ H(σ, 0). From the de�nition of a local diagram [de�nition

2.2.1] and results in [15], we know that such a set Y exists, and that Y is equal to

Statics(Πlocal(α)) [H(σ, 0) [H(σ, 1) [Obase. It is easy to see that:

1. Statics(Πglobal(α)) = Statics(Πlocal(α))\

{effect(Action, Fluent, Value) : type(Action, send)}[

{effect(Action, pending, true) : type(Action, send)},

2. and that X = Y \ {effect(Action, Fluent, Value) : type(Action, send)} [

{effect(Action, pending, true) : type(Action, send)} [
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{¬h(pending, 0),¬h(satisfied, 0)} [ {¬h(pending, 1),¬h(satisfied, 1)} [

Ocomm.

By the de�nition of an answer set, Y is closed under Πα
Y [H(σ, 0). From 1 and 2,

X is closed under Πα
X [H(δ, 0). Now consider any rule of the form:

h(IF, 1)← h(IF, 0) where IF is an inertial uent.

By construction of X, if h(IF, 0) 2 X, then h(IF, 1) 2 X. Similarly for rules of the

form ¬h(IF, 1)← ¬h(IF, 0). Now consider any rule of the form:

¬h(DF, T)← defaultsTo(DF, false) such that h(DF, 0) 62 X.

As ¬pending,¬satisfied 2 δ, we know that ¬h(pending, T),¬h(satisfied, T) 2

X for T 2 {0, 1}. Consequently, X is closed under such rules as well. Lastly, X is

vacuously closed under the rules of Runsatisfied.

The minimality of X and that δ = {f : h(f, 0) 2 X} [ {¬f : ¬h(f, 0) 2 X} are

evident by construction.

Now that we have established that states in an agent's local diagram may be

extended to obtain states in the agent's global diagram, we show a similar pair of

results with regards to the arcs in the agent's respective diagrams.

Lemma 4.1.2. Let α be an agent, ε be a single elementary action such that

type(ε) 6= send, and let τ = hσ, ε, �σi be a transition in Tlocal(α). Then for any state

δ 2 Tglobal(α) such that σ � δ, there exists an expansion �τ = hδ, �ε, �δi 2 Tglobal(α)

of τ.

Proof of Lemma 4.1.2: For simplicity we assume that α belongs to a multi-agent

system M which contains a single request R. In addition, let H(s, i) denote {h(f, i) :

f 2 s}[ {¬h(f, i) : ¬f 2 s}, and let O(s, i) denote {o(a, i) : a 2 s}[ {¬o(a, i) : a 62 s}.

Furthermore, in the interest of readability, as there is only a single request the
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parameters of the uents pending, and satisfied are omitted. When there is a

need to di�erentiate between the client and server variants of these uents, the

notation pendingc, satisfiedc, and pendings, satisfieds is used.

There are several cases which we must consider:

. δ = σ [ {pending,¬satisfied}.

. δ = σ [ {¬pending, satisfied}.

. δ = σ [ {¬pending,¬satisfied}.

. δ = σ [ {pending, satisfied}.

Case 1: Consider the case where δ = σ [ {pending,¬satisfied}. Let �τ =

hδ, �ε, �δi where �ε = {ε,w} where w is an action of type wait associated with R,

and �δ = �σ [ {pending,¬satisfied}. By de�nition of an expansion [de�nitions

2.3.1, 2.3.2], �τ is an expansion of τ if �τ 2 Tglobal(α). By de�nition of a global

diagram [de�nition 2.2.2], �τ 2 Tglobal(α) if there exists an answer set X of Π =

Πglobal(α) [H(δ, 0) [ {o(ε, 0)} [ {o(w, 0)}.

Let X = Statics(Πglobal(α))[H(δ, 0)[O({ε, w}, 0)[H(�δ, 1)[O({w}, 1). Let us

show that X is an answer set of Π. Note that ΠX = Πα
X [ H(δ, 0) [ O({ε,w}, 0) [

Πinertia
X [ Πeffects

X [ Πdefault
X [ Cglobal

X where:

. Πinertia
X has the form: {h(IF, 1) ← h(IF, 0) : ¬h(IF, 1) 62 X} [ {¬h(IF, 1) ←

¬h(IF, 0) : h(IF, 1) 62 X} where IF is an inertial uent in X.

. Πeffects
X has the form: {h(F, 1) ← o(A, 0), effect(A, F, true)} [ {¬h(F, 1) ←

o(ε, 0), effect(A, F, false)}, where F is a uent in X.

. Πdefault
X = {¬h(DF, T) ← defaultsTo(DF, false)} if DF is a default uent

such that h(DF, 0) 62 X.
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. Cglobal
X = {GM1 − GM22} [ {← satisfied}

To show that X is closed under the rules of ΠX, let us consider an answer set Y

of Φ = Πlocal(α) [ H(σ, 0) [ O({ε}, 0) [ H(�σ, 1). From the de�nition of a local

diagram and results in [15], we know that such a set Y exists, and that Y is equal

to Statics(Πlocal(α)) [H(σ, 0) [O({ε}, 0) [H(�σ, 1). It is easy to see that:

1. Statics(Πglobal(α)) = Statics(Πlocal(α)) \

{effect(Action, Fluent, Value) : type(Action, send)} [ Statics(Cglobal)

2. X = Y \ {effect(Action, Fluent, Value) : type(Action, send)} [

Statics(Cglobal) [ {h(pending, 0),¬h(satisfied, 0)} [

{o(w, 0)} [ {h(pending, 1),¬h(satisfied, 1)} [ {o(w, 1)}

By the de�nition of an answer set, Y is closed under Πlocal(α)
Y [ H(σ, 0) [

O({ε}, 0). From 1 and 2, X is closed under Πα
X [ H(δ, 0) [ O({ε,w}, 0). Consider

any rule in Πinertia
X the form:

h(IF, 1)← h(IF, 0) where IF is an inertial uent.

Such a rule belongs to Πinertia
X only if ¬h(IF, 1) 62 X. By construction, if h(IF, 0) 2 X

and ¬h(IF, 1) 62 X, then h(IF, 1) 2 X. Similarly for any rule in Πinertia
X the form:

¬h(IF, 1)← ¬h(IF, 0) where IF is an inertial uent.

Now let us consider any rule in Πeffects
X of the form:

h(F, 1)← o(A, 0), effect(A, F, true)

By construction, if effect(ε, F, true) 2 X, then h(F, 1) must belong to X. Similarly

for rules of Πeffects
X of the form:

¬h(F, 1)← o(A, 0), effect(A, F, false)
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Consequently, X is closed under Πeffects
X as well. Furthermore, as ¬satisfied 2

δ and ¬satisfied 2 �δ, X is closed under Πdefault
X. Lastly, as for T 2 {0, 1},

h(pending, T), ¬h(satisfied, T), and o(w, T) belong to X, it is evident that X

is closed under Cglobal
X.

Having proved that X is closed under the rules of Π, we must now show that

X is minimal. Suppose that there exists an answer set S of Π such that S � X.

From the de�nition of an answer set [de�nition 1.3.2], we know that S must contain

Statics(Πglobal(α)) [H(δ, 0) [O({e,w}, 0). As S contains H(δ, 0), we know that S

contains h(pending, 0) and ¬h(satisfied, 0). Consequently, from rule GM7, the

fact that S � X, and that h(satisfied, 1) 62 X, we know that ¬h(satisfied, 1) 2 S.

As both h(pending, 0) and ¬h(satisfied, 1) belong to S, by application of rule

GM13, S must also contain h(pending, 1). Finally by application of rule GM8,

o(w, 1) 2 S.

Now let us consider any literal f where f 2 �σ. By construction of X, h(f, 1) 2 X.

By construction of δ, and the fact that H(δ, 0) � S, we know that {h(f, 0) : f 2

σ} � S. As h(f, 1) 2 X, we know that there exists a rule r 2 Π whose body is

satis�ed by X, and head(r) = h(f, 1). Suppose that r is a ground instance of

IA1 (an inertia axiom). We know that ¬h(f, 1) 62 X. As S � X, ¬h(f, 1) 62 S.

Consequently, body(r) is satis�ed, and hence h(f, 1) 2 S. As we have just shown,

¬h(satisfied, 1) 2 S. Consequently, the bodies of rules GM15 and GM16, are not

satis�ed, and therefore the only remaining rule r, where head(r) = h(f, 1) is rule

AE1. As h(f, 1) 2 X, body(r) � X, and as we have previously shown, body(r) 2 S,

h(f, 1) 2 S as well. Hence, H(�δ, 1) 2 S, S = X, and hence X must be minimal.

The proofs for the remaining cases are conducted in similar fashion.

Lemma 4.1.3. Let α be an agent, a be a single elementary action such that

type(a) = send, and let τ = hσ, a, �σi be a transition in Tlocal(α). There exists
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an expansion �τ = hδ, a, δ0, a0, . . . , an, �δi 2 Tglobal(α) of τ, where a0, . . . , an are

actions of type wait whose message corresponds to that of a, and σ � δ, and

�σ � �δ.

Proof of Lemma 4.1.3: For simplicity we maintain the assumptions that were used

in the previous proofs.

Let δ = σ [ {¬pending,¬satisfied} and let �τ = hδ, a, δ0, a0, �δi where δ0 =

σ [ {pending,¬satisfied}, a0 is the corresponding action of type wait, and �δ =

σ [ {¬pending, satisfied}. By construction of Tglobal(α) it is apparent that �τ 2

Tglobal(α) and hence �τ is an expansion of τ.

Lastly, the relationship between the paths of an agent's local and global diagrams

is given by the following theorem.

Theorem 4.1.1. Let α be an agent, and let π be a path whose arcs are labeled by

elementary actions in Tlocal(α). Then there exists an expansion �π of π in Tglobal(α).

Proof of Theorem 4.1.1: As before, we maintain the assumptions from the previ-

ous proofs. The proof is done by induction on the length of a path, denoted by

n.

Let n = 0. In this case π consists of only a single state of Tlocal(α). From Lemma

4.1.1 we know that there exists a state δ 2 Tglobal(α) such that σ � δ. Therefore,

by de�nition π has an expansion �π = δ in Tglobal(α).

Let n = 1. In this case π has the form hσ, a, �σi. Here there are two possibilities

to consider: type(a) 6= send, and type(a) = send. Suppose that type(a) 6= send.

By Lemma 4.1.2, we know that there exists an expansion of π in Tglobal(α). Simi-

larly, if type(a) = send, by Lemma 4.1.3, we know that there exists an expansion

of π in Tglobal(α). Hence we have proven our base.
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Let us assume that for any path π of length k � n in Tlocal(α), π has an

expansion in Tglobal(α).

Now let k = n + 1. In this case, π has the form hσ1, a1, σ2, a2, . . . , an+1, σn+1i.

Consider the pre�x β = hσ1, a1, σ2i of π. β has a length of 1, and hence has

an expansion �β in Tglobal(α). Now consider γ = hσ2, a2, . . . , an+1, σn+1i. By our

inductive hypothesis, we know that γ has an expansion �γ in Tglobal(α). Let �π = �β��γ.

By de�nition of an expansion, �π is an expansion of π. Therefore by mathematical

induction, if π is a path labeled by elementary actions in Tlocal(α), there exists an

expansion �π of π in Tglobal(α).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 SUMMARY

In this work we introduced a general framework for reasoning about cooperative

multi-agent systems. We began by extending the fundamental notion of an agent to

facilitate communication via the introduction of requests. We then introduced the

notions of an agent's local and global perspectives and their respective diagrams.

These diagrams form the basis of our framework by providing the foundation upon

which an agent perceives the world around him. Together these diagrams are used

by an agent to construct plans, and reason about how they may play out in the

domain. In addition we introduced the system diagram, which is used as a means of

modeling the \actual state of the world" for the purposes of diagnosis and reasoning

about the system at large.

Having introduced the basic framework we then presented an axiomatization of

reasoning about agent communication. An example detailing a simple system was

presented, and a methodology for representing agents to make use of the axiomati-

zation was described in detail as well.

Finally, once the axiomatization was complete, we moved on to detailing some

fundamental properties of the framework, speci�cally the relationship of paths in

an agent's local diagram to those of it's global diagram. It was shown that given

a cooperative multi-agent system, the paths of an agent's local diagram labeled by

elementary actions have corresponding expansions in the agent's global diagram.

Further properties will be built upon the results discussed here.
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5.2 FUTURE WORK

This work presents only the foundation upon which a comprehensive logical

theory of multi-agent systems may be built. Many open questions remain, chief

among them are formalizations of many common phenomena (such as deadlocks,

circular-wait conditions, starvation, etc.), as well as the expansion of the framework

to deal with competitive multi-agent systems, and eventually systems containing

both cooperating and competing agents. We examine each of these in turn in the

following subsections.

5.2.1 FORMALIZING PHENOMENA

There is a large body of knowledge covering the topic of coordinating the e�orts

of, and the resources used by the agents of a given multi-agent domain. These topics

�rst arose in the area of operating system research with the ability of systems to

perform various forms of concurrent operations. By basing the framework on a set

of transition diagrams, we believe that it will be possible to formalize the notions

of deadlock, circular-wait, and the like in terms of properties of paths in the system

diagram.

Consider the phenomenon of deadlock. A set of agents is said to be deadlocked

if each agent of the set is waiting for some task that only another agent of that set

may perform. A possible example of a deadlocked state in our framework is any

state of the system diagram which contains a pair of uents of the general form

pending(α, β, r1), pending(β,α, r2).

Similarly with circular-wait. Such situations arise where the requests issued be-

tween the agents of the system for a loop. As an example, consider the scenario:

\John asks his IT department to �x his computer. In order to do so the IT de-

partment asks a specialist to make an appointment. The specialist sends John an
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email asking for a good time to stop by." A potential realization of such a scenario

in our framework would be a state containing a set of uents of the general form

{pending(α, β, r1), pending(β, γ, r2), pending(γ, α, r3)}.

It is our belief that a thorough exploration of these areas and a formalization

of them as properties of paths in the system diagram could enable designers and

implementers to make concrete assertions about the quality of plans that agents

generate, in a similar fashion to the work done in [9]. In addition, comparing these

formalizations with work done on representing these phenomena via Petri nets [8]

may open new avenues of research.

5.2.2 EXPANDING THE FRAMEWORK

As was mentioned previously, our framework does not utilize a formal action

language. As a result the translations making up our logic programs do not as of

yet have formal proofs of soundness and completeness with regards to the various

transition diagrams presented. In the future we plan to develop an action language

suitable for representing multi-agent domains, together with a provenly correct

translation of action description in this action language to logic programs.

The current de�nition of a multi-agent systems assumes that the agents in the

domain do not change over time. Another possible avenue for expanding the frame-

work is to enable agents to reason about the e�ects of agents entering or exiting the

system. This could be coupled with work done on learning in [1], to have agents

inquire about the capabilities of incoming agents.

We also hope to expand the applicability of our framework to other multi-agent

domains. There are other forms of multi-agent systems aside from cooperative ones.

The application of this work centers on the development of cooperative systems,

and is not applicable to competitive or hybrid systems (systems containing both
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competitive and cooperative agents). It is our hope that the methods described in

this text may be applied towards expanding the framework both in the theoretic

aspects, as well as expanding the communication modules to handle competitive

domains. In combination with the development of more modular answer-set pro-

gramming languages [10], these could then be bundled into a single, comprehensive

library of axioms governing agent communication.
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APPENDIX: AGENT JOHN

OBJECTS OF THE DOMAIN

#domain time(T).

agent(john).

agent(secretary).

#domain agent(Agent).

#domain agent(Agent1).

#domain agent(Agent2).

object(ticket).

#domain object(Object).

property(packed).

property(ready).

property(possessionOf(Object)).

#domain property(Property).

boolean(true).

boolean(false).

#domain boolean(Value).

#domain boolean(Value1).

#domain boolean(Value2).
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FLUENTS, REQUESTS, AND MESSAGES

inertialFluent(has(Agent,Property)).

#domain inertialFluent(InertialFluent).

fluent(InertialFluent).

#domain fluent(Fluent).

request(buy(Object,Agent)).

#domain request(Request).

clientOf(john,buy(Object,Agent)).

serverOf(secretary,buy(Object,Agent)).

mapsTo(john,buy(Object,Agent),has(Agent,possessionOf(Object)),true).

message(msg1(john)).

task(msg1(john),buy(ticket,john)).

receiver(msg1(john),secretary).

#domain message(Message).

STATE CONSTRAINTS

% An agent is ready if the agent is packed and has a ticket.

h(has(Agent,ready),T) :-

h(has(Agent,packed),T),

h(has(Agent,possessionOf(ticket)),T).
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% An agent is not ready if the agent is not packed, or if the agent

% does not have a ticket.

-h(has(Agent,ready),T) :-

-h(has(Agent,packed),T).

-h(has(Agent,ready),T) :-

-h(has(Agent,possessionOf(ticket)),T).

ACTIONS AND EXECUTABILITY CONDITIONS

action(pack(john)).

type(pack(john),pack).

actor(pack(john),Agent).

effect(pack(john),has(john,packed),true).

action(send(john,Message)).

type(send(john,Message),send).

actor(send(john,Message),john).

sent(send(john,Message),Message).

#domain action(Action).

% Agents do not repack their bags.

-o(Action,T) :-

type(Action,pack),

actor(Action,Agent),

h(has(Agent,packed),T).
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APPENDIX: AGENT SECRETARY

OBJECTS OF THE DOMAIN

#domain time(T).

agent(john).

agent(secretary).

#domain agent(Agent).

#domain agent(Agent1).

#domain agent(Agent2).

object(ticket).

#domain object(Object).

property(online).

property(received(Object)).

#domain property(Property).

boolean(true).

boolean(false).

#domain boolean(Value).

#domain boolean(Value1).

#domain boolean(Value2).

FLUENTS, REQUESTS, AND MESSAGES

inertialFluent(has(Agent,Property)).
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#domain inertialFluent(InertialFluent).

fluent(InertialFluent).

#domain fluent(Fluent).

request(buy(Object,Agent)).

#domain request(Request).

clientOf(john,buy(Object,Agent)).

serverOf(secretary,buy(Object,Agent)).

mapsTo(secretary,buy(Object,Agent),has(Agent,received(Object)),true).

message(msg1(john)).

task(msg1(john),buy(ticket,john)).

receiver(msg1(john),secretary).

#domain message(Message).

ACTIONS AND EXECUTABILITY CONDITIONS

action(logon(secretary)).

type(logon(secretary),logon).

actor(logon(secretary),secretary).

effect(logon(secretary),has(secretary,online),true).

action(buy(secretary,Object,Agent)).

type(buy(secretary,Object,Agent),buy).

actor(buy(secretary,Object,Agent),secretary).
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effect(buy(secretary,Object,Agent),has(Agent,received(Object)),true).

#domain action(Action).

% The secretary cannot purchase an object if she is not online.

-o(Action,T) :-

type(Action,buy),

actor(Action,Agent),

-h(has(Agent,online),T).
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APPENDIX: COMMUNICATION MODULE Clocal

EFFECTS OF COMMUNICATION ACTIONS

% rule LM1

effect(Action,Fluent,Value) :-

type(Action,send),

actor(Action,Agent),

sent(Action,Message),

task(Message,Request),

mapsTo(Agent,Request,Fluent,Value).

EXECUTABILITY CONDITIONS

% rule LM2

-o(Action,T) :-

type(Action,send),

h(Fluent,T),

effect(Action,Fluent,true).

% rule LM3

-o(Action,T) :-

type(Action,send),

-h(Fluent,T),

effect(Action,Fluent,false).
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APPENDIX: COMMUNICATION MODULE Cglobal

THE FLUENTS pending AND satisfied

% rule GM1

defaultFluent

(

pending(perspective(Client),Client,Server,Request);

satisfied(perspective(Client),Client,Server,Request)

) :-

clientOf(Client,Request),

serverOf(Server,Request).

#domain defaultFluent(DefaultFluent).

% rule GM2

defaultsTo(DefaultFluent,false).

% rule GM3

fluent(DefaultFluent).

% rule GM4

inertialFluent

(

pending(perspective(Server),Client,Server,Request);

satisfied(perspective(Server),Client,Server,Request)

) :-
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clientOf(Client,Request),

serverOf(Server,Request).

COMMUNICATION ACTIONS

% rule GM5

effect(Action,pending(perspective(Client),

Client,Server,Request),true) :-

type(Action,send),

actor(Action,Client),

sent(Action,Message),

receiver(Message,Server),

task(Message,Request).

% rule GM6

action(wait(Agent,Message)) :-

task(Message,Request),

clientOf(Agent,Request).

type(wait(Agent,Message),wait).

actor(wait(Agent,Message),Agent).

msg(wait(Agent,Message),Message).

% rule GM7

h(satisfied(perspective(Client),Client,Server,Request),T + 1) |

-h(satisfied(perspective(Client),Client,Server,Request),T + 1) :-

o(Action,T),

type(Action,wait),

69



Texas Tech University, Gregory Gelfond, May 2007

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),

task(Message,Request).

% rule GM9

-o(Action,T) :-

h(pending(perspective(Client),Client,Server,Request),T),

type(Action,send),

actor(Action,Client).

% rule GM10

-o(Action,T) :-

h(Fluent,T),

type(Action,send),

actor(Action,Client),

sent(Action,Message),

task(Message,Request),

mapsTo(Agent,Request,Fluent,true).

% rule GM11

-o(Action,T) :-

-h(Fluent,T)

type(Action,send),

actor(Action,Client),

sent(Action,Message),
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task(Message,Request),

mapsTo(Agent,Request,Fluent,false).

% rule GM12

-o(Action,T) :-

-h(pending(perspective(Client),Client,Server,Request),T),

type(Action,wait),

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),

task(Message,Request).

ACTION TRIGGERS

% rule GM8

o(Action,T) :-

h(pending(perspective(Client),Client,Server,Request),T),

type(Action,wait),

actor(Action,Client),

msg(Action,Message),

receiver(Message,Server),

task(Message,Request).

STATE CONSTRAINTS

% rule GM13

h(pending(perspective(Client),Client,Server,Request),T + 1) :-

-h(satisfied(perspective(Client),Client,Server,Request),T + 1),
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h(pending(perspective(Client),Client,Server,Request),T).

% rule GM14

-h(pending(perspective(Client),Client,Server,Request),T) :-

h(satisfied(perspective(Client),Client,Server,Request), T).

% rule GM15

h(Fluent,T) :-

h(satisfied(perspective(Client),Client,Server,Request),T),

mapsTo(Client,Request,Fluent,true).

% rule GM16

-h(Fluent,T) :-

h(satisfied(perspective(Client),Client,Server,Request),T),

mapsTo(Client,Request,Fluent,false).

% rule GM17

h(pending(perspective(Server),Client,Server,Request),T) :-

h(pending(perspective(Client),Client,Server,Request),T).

% rule GM18

-h(pending(perspective(Server),Client,Server,Request),T) :-

h(satisfied(perspective(Server),Client,Server,Request),T).

% rule GM19

h(satisfied(perspective(Server),Client,Server,Request),T + 1) :-
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h(pending(perspective(Server),Client,Server,Request),T),

h(Fluent,T + 1),

mapsTo(Server,Request,Fluent,true).

% rule GM20

h(satisfied(perspective(Server),Client,Server,Request),T + 1) :-

h(pending(perspective(Server),Client,Server,Request),T),

-h(Fluent,T + 1),

mapsTo(Server,Request,Fluent,false).

% rule GM21

-h(satisfied(perspective(Server),Client,Server,Request),T) :-

h(pending(perspective(Server),Client,Server,Request),T).

% rule GM22

h(satisfied(perspective(Client),Client,Server,Request),T) :-

h(satisfied(perspective(Server),Client,Server,Request),T).

% rule GM23

:- h(satisfied(perspective(secretary),

john,secretary,buy(ticket,john)),T),

not h(satisfied(perspective(john),

john,secretary,buy(ticket,john)),T).

% rule GM24

:- not h(satisfied(perspective(secretary),
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john,secretary,buy(ticket,john)),T),

h(satisfied(perspective(john),

john,secretary,buy(ticket,john)),T).
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APPENDIX: LIBRARY MODULES

DEFAULT FLUENTS

% rule DV1

h(DefaultFluent,T) :-

defaultsTo(DefaultFluent,true),

not -h(DefaultFluent,T).

% rule DV2

-h(DefaultFluent,T) :-

defaultsTo(DefaultFluent,false),

not h(DefaultFluent,T).

EFFECTS OF ACTIONS

% rule AF1

h(Fluent,T + 1) :-

o(Action,T),

effect(Action,Fluent,true).

% rule AF2

-h(Fluent,T + 1) :-

o(Action,T),

effect(Action,Fluent,false).
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INERTIA AXIOMS

% rule IA1

h(InertialFluent,T + 1) :-

h(InertialFluent,T),

not -h(InertialFluent,T + 1).

% rule IA2

-h(InertialFluent,T + 1) :-

-h(InertialFluent,T),

not h(InertialFluent,T + 1).
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