
An Action Language for Reasoning about Beliefs in Multi-Agent Domains

Chitta Baral and Gregory Gelfond
Ira A. Fulton School of Engineering

Arizona State University
Tempe, AZ 85281-8809

chitta@asu.edu,logicprogrammer@gmail.com

Enrico Pontelli and Tran Cao Son
Department of Computer Science

New Mexico State University
Las Cruces, NM 88011

epontell|tson@cs.nmsu.edu

Abstract

The paper presents a novel action language for multi-
agent domains, mA+ , which generalizes action languages
to multi-agent domains. The language allows representation
and reasoning about different types of actions such as on-
tic (world-altering) actions, sensing actions, and announce-
ments. It also allows the specification of agents’ dynamic
awareness w.r.t. action occurrences. mA+ considers three
different kinds of awareness role: fully aware, partially aware,
and completely ignorant (oblivious) of the action’s occur-
rence and its effects. The semantics of mA+ relies on states
(pointed Kripke models), used to encode the agent’s knowl-
edge and the real state of the world, and is defined by a tran-
sition function. The paper identifies a class of definite action
theories whose set of initial states is finite and thus can be im-
plemented. Finally, mA+ is related to other formalisms for
reasoning about actions in multi-agent domains.

Introduction and Motivation
Reasoning about Actions and Change (RAC) has been an im-
portant goal in AI since McCarthy’s 1959 work (McCarthy
1959), where he illustrates “programs with common-sense”
through reasoning about actions to fulfill “wants”. In the
early days of AI, RAC played a driving role in the devel-
opment of logics (especially, non-monotonic logics) (Mc-
Carthy 1980; McDermott and Doyle 1980; Reiter 1980) and
languages to represent knowledge. It gave rise to the impor-
tant “frame problem”1 (McCarthy and Hayes 1969) that was
the focus of AI research for several decades (Brown 1987;
Hanks and McDermott 1987; Kartha 1994; Lifschitz 1987;
Lin and Reiter 1994; Reiter 1991; 2001; Sandewall 1994;
Shanahan 1997; Scherl and Levesque 1993). During the
1990’s, significant progress was made in reasoning about
actions and in solving the frame problem under various con-
ditions (Baral and Gelfond 1997; Baral 1995; Gelfond and
Lifschitz 1993; Giunchiglia, Kartha, and Lifschitz 1997;
Giunchiglia and Lifschitz 95; Lifschitz 1997; Kartha and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The frame problem is to represent the principle that proper-
ties of the world (fluents) do not change unless they are forced to
change due to an action. In AI, this was first mentioned in (Mc-
Carthy and Hayes 1969), but one can trace the notion to Leibniz
(Leibniz c 1679) and Newton’s laws of motion (Newton 1687).

Lifschitz 1994; McCain and Turner 1995; Turner 1997).
However, the focus was mostly on a single agent operating in
an environment. The relatively fewer proposals on multiple
agents (Baral and Gelfond 1997; Lin and Shoham 1995) do
not consider the interplay between the agents’ knowledge,
nor they consider actions that impact the agents’ knowl-
edge about other agents’ knowledge. One significant con-
tribution of the works in this decade was the development of
action and domain specification languages with independent
semantics (Baral and Gelfond 1997; Gelfond and Lifschitz
1993; 1998; Giunchiglia and Lifschitz 98), which allow the
precise statement and proof of results about frame prob-
lems and about the encoding of planning domains in vari-
ous logics. In summary, while earlier work on RAC gives us
some ideas on how to design action specification languages,
address frame problems, and develop planners, they barely
touch these issues in a multi-agent setting.

To illustrate our points, let us introduce an example that
will be used throughout the paper.

Example 1 Consider a simple scenario with three agentsA,
B, and C, where agent A, a friend of C (a double agent in
the organization of B), is in the custody of a hostile agent
B. A needs C’s help to escape. A also needs to take the
key without B knowing about it and makes C aware that he
has the key. He cannot do that while B is watching. C can
only be aware of A’s action if he is present and watching A.
C can make A aware of his presence by making noise (e.g.,
shouting). A simple plan that helpsA to escape is as follows.

Agent A waits for C to be present, distracts B, signals
C (so that C is watching A), and then takes the key.

The plan requires actions such as “distract” and “signal”
which, at first glance, may seem like world changing ac-
tions, such as picking up a block; but upon further analysis,
these actions alter the world in such a way that some subse-
quent actions (e.g., take the key) have impact not only on the
world, but also on agents’ knowledge and beliefs about the
world and about other agents’ knowledge and beliefs. For
example, after A distracts B and takes the key, B will not
know that A has the key, and will believe that A does not
have it; A knows that B does not know that A has the key.
Similarly, when A signals C and takes the key, C will know
that A has the key, and A will know that C knows that. 2

Multi-agent domains and reasoning about agents’ knowl-
edge about other agents’ knowledge has been explored in the
Theoretical Aspect of Rationality and Knowledge (TARK)
and Dynamic Epistemic Logic (DEL) communities (Baltag
and Moss 2004; Boella and van der Torre 2005; Fagin et al.
1995; Gerbrandy 2006; Herzig and Troquard 2006; Meyer
2000; Sauro et al. 2006; Spaan, Gordon, and Vlassis 2006;
van Benthem, van Eijck, and Kooi 2006; van der Hoek, Jam-
roga, and Wooldridge 2005; van Ditmarsch, van der Hoek,
and Kooi 2007). More recent proposals (Baltag and Moss
2004; van Benthem, van Eijck, and Kooi 2006; van Dit-
marsch, van der Hoek, and Kooi 2007) address the issue of
describing how to change knowledge and beliefs. Among
the various proposals, the formalisms of action models (Bal-
tag and Moss 2004) and update models (van Benthem, van
Eijck, and Kooi 2006) have been well accepted by the com-
munity. While action and update models are good tools to
compute change in knowledge, they hard-code the roles of
agents; thus, they do not allow the dynamic manipulation of
the roles of agents (through actions such as “distract” and
“signal”), that is needed to reason and plan for goals of the
kind we mentioned in the example (A wants to be free). It is
well-accepted that the knowledge and belief of agents about
the world and about others’ beliefs can be represented by
a pointed Kripke structure (defined later). Changes caused
by the execution of actions are reflected by updates on the
pointed Kripke structure. Let us continue with Example 1.

Example 2 The states of the world in Example 1 can be de-
scribed using the following fluents:2 has key(x)—x has the
key; custody(x, y)—x is in the custody of y; present(x)—
x is present; and watching(x, y)—x is watching y; x and y
denote different agents in {A,B,C}.

Let us consider the situation in which A is in custody of
B, B is watching A, C is not watching A, nobody has the
key, and everybody is present. Everyone knows that A is in
custody ofB,B is watchingA,C is not watchingA, nobody
has the key, andA andB are present.A andC are aware that
C is present but B is unaware of the presence of C.

The state of the world as well as the state of knowl-
edge of A, B, and C can be represented using the
pointed Kripke structure shown in Figure 1, with two state
symbols s1 and s2, whose interpretations3 are given by
the sets {watching(B,A), custody(A,B), present(C)} ∪
PAB and {watching(B,A), custody(A,B)}∪PAB , where
PAB = {present(B), present(A)}, respectively. The
links labeled A,B,C represent the accessibility relations
of agents, indicating their uncertainty about the world. A
double-circled node indicates the real state of the world.

Figure 1: A pointed Kripke Structure

2We also need fluents for describing the location of the agents.
For simplicity, we only describe whether an agent is present or not.

3Fluents listed in the interpretation are true.

Assume that the agent A distracts agent B. Intuitively, B
will not be watching A after the execution of this action,
i.e., the real state of the world can be encoded by the in-
terpretation s3 = {custody(A,B), present(C)} ∪ PAB .
Accordingly, we have s4 = s2 \ {watching(B,A)}. The
resulting structure, however, depends on awareness of the
agents about the execution of the action and its effects. The
structure in Fig. 2 describes the situation when all agents are
aware of the action’s execution and effects. In this case, ev-
eryone has the same knowledge thatB is no longer watching
A which is also true in the real state of the world.

Figure 2: Everyone is aware that A distracts B

The situation is different when only A and B are aware
of the action’s execution and effects. As such, only A and B
have the knowledge that B is no longer watching A, while
C still believes that B is watching A and that everybody
believes that B is watching A; B is still not aware of the
presence of C. This is depicted in Fig. 3.

Figure 3: Everyone but C is aware that A distracts B
To account for different contexts, in which an action is

executed, approaches to modeling changes using program
models or update models (e.g., (Baltag and Moss 2004;
van Benthem, van Eijck, and Kooi 2006)) would need to
develop different update models. For the two situations dis-
cussed above, the update models are given in Fig. 4, the left
and right model will update the structure in Fig. 1 to the
structures in Fig. 2 and Fig. 3, respectively. 2

Figure 4: Update models

The discussion in Example 2 shows that approaches to
modeling actions and change based on update models are
not elaboration tolerant. Furthermore, the approach leaves
one critical question unanswered, namely “how should an
update model be constructed given an English description of
the effects of an action?” For instance, given the statement
about the effect of the action distract: “A distracts B causes
B not watching A,” why do we use the two update models

in Fig. 4 and how do we construct them.
In this paper we propose a novel action language, mA+ ,

for multi-agent domains with the following salient features:
• In mA+ , we allow dynamic specification of roles of

agents and separate the specification of action effects from
the agents’ roles. This is important as this allows specifi-
cation of actions like signal and distract. The impact of
this is that, using mA+ , plans can be made to manipulate
other agents’ observability. All this could not be specified
in mA (Baral et al. 2010) or in any of the existing DEL-
based formalisms.

• The semantics of mA+ is defined using the notion of up-
date models from dynamic epistemic logic. This not only
make the semantic characterization simpler, but serves as
one of the bridges between research in DEL and reasoning
about actions using high level languages.

Preliminaries
Belief Formulae and Kripke Structures
We assume an environment with a set AG of n agents. The
state of the world can be characterized by a set F of propo-
sitional variables, called fluents. We will be concerned with
the belief of agents about the environment and about the be-
lief of other agents. For this purpose, we adapt the logic of
knowledge and the notations used in (Fagin et al. 1995). We
associate to each agent i a modal operator Bi and represent
the belief of an agent as belief formulae in a logic extended
with these operators. Formally:
• Objective formulae: an objective formula is a proposi-

tional formula built over F and propositional logical con-
nectives ∨, ∧,→, ¬, etc. f ∈ F is called an fluent atom.
A fluent literal is either f ∈ F or its negation ¬f .

• Belief formulae: a belief formula (or, simply, formula) is:
- an objective formula;
- a formula of the form Biϕ where ϕ is a belief formula;
- a propositional combination of belief formulae;
- a formula of the form Eαϕ or Cαϕ where ϕ is a for-

mula and non-empty set α ⊆ AG.
Formulae of the form Eαϕ and Cαϕ are referred to as group
formulae. Whenever α = AG, we simply write Eϕ and Cϕ.
LAG is the language of all belief formulae over F and AG.

Intuitively, belief formulae are used to describe the beliefs
of agents concerning the state of the world as well as about
the beliefs of other agents. For example, the formula B1f
states that “1 believes that f is true,” while B1B2p states
that “1 believes that 2 believes that p is true.”

Definition 1 (Kripke Structure) A Kripke structure is a tu-
ple 〈S, π,B1, . . . ,Bn〉, where S is a set of state symbols, π
is a function that associates an interpretation of F to each
element of S, and Bi ⊆ S × S for 1 ≤ i ≤ n.

A pointed Kripke structure (or state) is defined as a pair
(M, s) where M is a Kripke structure and s ∈ S.

Satisfaction between formulae and states is defined next.

Definition 2 Given a formula ϕ, a Kripke structure M =
〈S, π,B1, . . . ,Bn〉, and a state symbol s ∈ S:

1. (M, s) |= ϕ if ϕ is a fluent formula and π(s) |= ϕ;

2. (M, s) |= Biϕ if for each t such that (s, t) ∈ Bi,
(M, t) |= ϕ;

3. (M, s) |= ¬ϕ if (M, s) 6|= ϕ;
4. (M, s) |= ϕ1 ∨ ϕ2 if (M, s) |= ϕ1 or (M, s) |= ϕ2;
5. (M, s) |= ϕ1 ∧ ϕ2 if (M, s) |= ϕ1 and (M, s) |= ϕ2.
6. (M, s) |= Eαϕ if (M, s) |= Biϕ for every i ∈ α.
7. (M, s) |= Cαϕ if (M, s) |= Ek

αϕ for every k ≥ 0 where
E1
αϕ = Eαϕ and Ek+1

α = Eα(Ek
αϕ).

For readability, we useM [S],M [π], andM [i], to denote the
components S, π, and Bi of M , respectively.

Example 3 The pointed Kripke structure in Fig. 1 is de-
scribed by (M1, s1) with M1 = 〈{s1, s2}, π,BA,BB ,BC〉
where BA = BC = {(s1, s1), (s2, s2)}, BB =
{(s1, s1), (s2, s2), (s1, s2), (s2, s1)} and π(s1)(f) = true
iff f ∈ {custody(A,B), watching(B,A), present(C)} ∪
PAB and π(s2)(f) = true iff f ∈ {watching(B,A),
custody(A,B)}∪PAB .4 It is common to visualize a Kripke
structure as a graph, with M [S] as nodes and with labeled
edges derived from M [i]. A double circle represents the dis-
tinguished state symbol of a pointed Kripke structure. 2

Intuitively, a Kripke structure denotes the possible worlds
considered by the agents—and the presence of multiple
worlds denotes uncertainty and presence of different be-
liefs. The relation (u, v) ∈ Bi denotes that the belief of
agent i about the real state of the world is insufficient for
her to distinguish between the state of the world described
by u and the one described by v. If M [π](u) |= ϕ and
M [π](v) |= ¬ϕ, then i is uncertain about the truth of ϕ. For
example, we can easily check that (M1, s1) |= present(C),
(M1, s2) |= ¬present(C), and (s1, s2) ∈ BB , and thus, B
is not aware of the presence of C.

The following axioms are often used in classifying Kripke
structures:
(K) ∀i ∈ AG,∀ϕ,ψ ∈ LAG [(Biϕ∧Bi(ϕ⇒ψ))⇒Biψ]
(T) ∀i ∈ AG,∀ψ ∈ LAG [Biψ ⇒ ψ]
(4) ∀i ∈ AG,∀ψ ∈ LAG [Biψ ⇒ BiBiψ]
(5) ∀i ∈ AG,∀ψ ∈ LAG [¬Biψ ⇒ Bi¬Biψ]
(D) ∀i ∈ AG [¬Bifalse]

A Kripke structure is S5 if it satisfies K, T, 4, and 5.

Definition 3 A set of belief formulae X is said to be S5-
(resp. K-, T-, 4-, and 5-) satisfiable (or consistent) if there
exists a S5- (resp. K-, T-, 4-, and 5-) Kripke structureM and
a state s ∈ M [S] such that (M, s) |= ψ for every ψ ∈ X .
(M, s) is then referred to as a model of X.

Update Models
Program models are used to represent action occurrences us-
ing structures similar to pointed Kripke structures and they
describe the effects of an action on states using an update op-
erator. The original paper (Baltag and Moss 2004) deals with
sensing actions and announcement actions. The approach is
extended to world-altering (a.k.a. ontic) actions in (van Ben-
them, van Eijck, and Kooi 2006) and is called update model.

4We will often give the function π indirectly by list-
ing the interpretation associated to the state symbols of
the Kripke structure. For instance, we will write s1 =
{custody(A,B), watching(B,A), present(C)} ∪ PAB .

An LAG-substitution is a set
{p1 → ϕ1, . . . , pn → ϕn}

where each pi is a distinct fluent and each ϕi is formula
in LAG . We will implicitly assume that for each p ∈ F \
{p1, . . . , pn}, the substitution contains p→ p. The set of all
LAG-substitutions is denoted with SUBLAG .

Definition 4 (Update Model) An update model Σ is a tuple
(Σ, {Ri | i ∈ AG}, pre, sub) where

• Σ is a set, whose elements are called events;
• each Ri is a binary relation on Σ;
• pre : Σ → LAG is a function mapping each event a ∈ Σ

to a formula in LAG; and
• sub : Σ→ SUBLAG .

A update instance ω is a pair (Σ, e) where Σ is an update
model (Σ, {Ri | i ∈ AG}, pre, sub) and e, referred to as a
designated event, is a member in Σ.

Intuitively, an update model represents different views of an
action occurrence which are associated with the observabil-
ity of agents. Each view is represented by an event in Σ.
The designated event is the one that agents who are aware
of the action occurrence will observe. The relation Ri de-
scribes agent i’s uncertainty on action execution—i.e., if
(σ, τ) ∈ Ri and event σ is performed, then agent i may be-
lieve that event τ is executed instead. pre defines the action
precondition and sub specifies the changes of fluent values
after the execution of an action. Update models are graph-
ically represented similarly to Kripke structures, while up-
date instances are similar to pointed Kripke structures. The
update instance on the left of Fig. 4 is (Σ1, σ) where

Σ1 = ({σ}, {Rx | x ∈ {A,B,C}}, pre1, sub1)
and RA = RB = RC = {(σ, σ)}, pre1(σ) = true, and
sub1(σ) = {watching(B,A)→ false}.
Definition 5 (Updates by an Update Model) Let M be a
Kripke structure and Σ = (Σ, {Ri | i ∈ AG}, pre, sub)
be an update model. The update operator, induced by Σ, de-
fines a Kripke structures M ′ = M ⊗Σ, where

• M ′[S] = {(s, τ) | s ∈M [S], τ ∈ Σ, (M, s) |= pre(τ)},
• ((s, τ), (s′, τ ′)) ∈ M ′[i] iff (s, s′) ∈ M [i] and (τ, τ ′) ∈
Ri, and

• For f∈F , M ′[π]((s, τ))|=f iff f→ϕ∈sub and
(M, s)|=ϕ.

Intuitively, the Kripke structure M ′ is obtained from the
component-wise cross-product of the old structure M and
the update model Σ, by (i) removing pairs (s, τ) s.t. (M, s)
does not satisfy the action precondition; and (ii) removing
links of the form ((s, τ), (s′, τ ′)) from the cross product of
M ′[i] and Ri if (s, s′) 6∈ M [i] or (τ, τ ′) 6∈ Ri. The former
ensures that the executability condition of the action is sat-
isfied. The latter guarantees that each agent’s accessibility
relation is updated according to the update model.

Example 4 Continuing with the previous examples, let us
compute M ′ = M1 ⊗Σ1:

• M ′[S]={(s1, σ), (s2, σ)}. Let u=(s1, σ) and v=(s2, σ).
• M ′[A] = M ′[C] = {(u, u), (v, v)} and M ′[B] =
{(u, u), (v, v), (u, v), (v, u)}.

• M ′[π](s3)(f) = true iff f ∈ s3 and M ′[π](s4)(f) =
true iff f ∈ s4.

Observe that the Kripke structure in Fig. 2 is obtained from
M ′ by renaming u and v to s3 and s4 respectively. 2

An update template is a pair (Σ,Γ) where Σ is an up-
date model with the set of events Σ and Γ ⊆ Σ. The up-
date of a state (M, s) given a update template (Σ,Γ) is a
set of states, denoted by (M, s) ⊗ (Σ,Γ), where for each
(M ′, s′)∈(M, s) ⊗ (Σ,Γ), it holds that M ′=M ⊗ Σ and
s′ = (s, τ) where τ ∈ Γ and s′ ∈ M ′[S]. We can easily
check that (M1, s1)⊗ (Σ1, {σ}) results in a pointed Kripke
structure which is bisimilar to the pointed Kripke structure
on the left of Fig. 2.

The Language mA+
The language mA+ is built over a signature 〈AG,F ,A〉,
where AG is a finite set of agent identifiers, F is a set of
fluents, and A is a set of actions. Each action in A is an ac-
tion the agents in the domain are capable of performing. For
the sake of simplicity, we restrict initially our attention to do-
mains where all agents have the same capabilities in terms
of actions. We organize the description ofmA+ in two parts:
(1) the description of the initial beliefs, and (2) the descrip-
tion of the actions and their effects.

Describing the Initial Beliefs
Syntax: In designing a specification of a domain in which
multiple agents are operating, we need to provide a descrip-
tion of the initial configuration of the agents’ beliefs about
the world and about others’ beliefs. In mA+ , this is accom-
plished through initial statements:

initially ϕ (1)

where ϕ is a belief formula. Intuitively, this statement says
that ϕ is true in the initial situation.

Example 5 The initial situation of the domain in Example
1 can be partially expressed by the following statements:

initially C(custody(A,B) ∧ watching(B,A))
initially C(¬has key(x)) (x ∈ {A,B,C})

initially C(present(x)) (x ∈ {A,B})
These statements say that A is in the custody of B, B is
watching A, nobody has the key, A and B are present, and
everyone knows all these facts.

If C is present and both A and B are unaware of the pres-
ence of C, we can add the following statements:

initially present(C)
initially C(¬BB(present(C)) ∧ ¬BB(¬present(C)))
initially C(¬BA(present(C)) ∧ ¬BA(¬present(C)))

Observe that in single-agent domains the state space de-
scribed by the initial states declarations is always finite—
bounded by 2|F|. This property allows us to employ avail-
able computational technologies (e.g., answer set solvers,
forward search planners) that rely on the existence of a finite
number of initial states. The same property does not hold in
the case of general initial state descriptions in mA+ . For
example, it is easy to see that if (M, s) is a pointed Kripke

structure such that (M, s) |= ϕ for some formula ϕ, then
(M ′, s) |= ϕ for any M ′ obtained from M by adding any
number of new state symbols.

One way to address such problem is to restrict the type
of Kripke structures considered for the initial situations. To
this end, we observe that several examples found in the lit-
erature have the following properties: (a) the initial situation
can be described by a set of statements involving the com-
mon knowledge among all agents; (b) the common knowl-
edge relates to whether a particular agent is aware or not of
a property of the world; and (c) the beliefs of agents coin-
cide with their knowledge about the world. We introduce a
class of formulae that will help us towards this objective.
Definition 6 (Restricted Formulae)
(i) Each objective formula ϕ is a restricted formula;
(ii) For i ∈ AG and ϕ an objective formula each belief

formula of the form Biϕ, Biϕ ∨Bi¬ϕ, ¬Biϕ ∧ ¬Bi¬ϕ
are restricted formulae;

(iii) For i ∈ AG and ψ is an objective formula or a re-
stricted formula defined in Item (ii), C(ψ) is a restricted
formula; and

(iv) No other formula is a restricted formula.
Intuitively, a restricted formula is such that: (i) describes
the “concrete” state of the world; (ii) expresses the belief
of agent i about the state of the world; (iii) states that agent
i has a belief about a property (but the specific belief is un-
known); (iv) encodes the lack of a belief about a property.

Semantics: The considerations made earlier about re-
stricting the type of Kripke structures used in the initial
states are realized by allowing only restricted formulae in
the initial statements (requirements (a) and (b)) and by con-
sidering only S5 structures (to meet the requirement (c)). Let
a S5-state be a state (M, s) where M satisfies S5.

It can be shown that if (M, s) is an S5-state whose states
are reachable from s then it is equivalent to an S5-state
(M ′, s′) such that for every pair of state symbols u, v ∈
M ′[S], the interpretations associated to u and v are different,
i.e.,M ′[π](u) 6≡M ′[π](v), which means that the set of state
symbols in M ′ is finite. The detail can be found in (Baral et
al. 2011). Thus, we can use this results to define a restricted
set of initial statements, i.e., those using only restricted for-
mulae, that allows us to focus on S5-states of bounded size,
as formalized in the following statement. Given a set of ini-
tial statements I, let us denote TI = {ψ | (initially Cψ) ∈
I} ∪ {ψ | (initially ψ) ∈ I, ψ is an objective formula}.
Definition 7 (Definite Initial Description) A set of initial
statements I is definite if

1. TI is a set of restricted formulae;
2. For every agent i,

(a) TI 6|= C(Biψ) holds for every fluent formula ψ s.t.
there exists no ϕ satisfying C(Biϕ) ∈ TI and |=ϕ→ψ;

(b) TI 6|= C(Biψ ∨Bi¬ψ) holds for every fluent formula
ψ s.t. there exists no ϕ satisfying C(Biϕ∨Bi¬ϕ) ∈ TI
and |= ϕ→ ψ.

I is said to be complete if for each fluent f ∈ F , either
[initially f] or [initially ¬f] belongs to I. I is said to be
consistent if TI is consistent.

Intuitively, the conditions state that I completely charac-
terizes the common knowledge of the agents about the be-
liefs of agent i about the world. We can prove that all S5-
initial states of a complete and consistent definite action the-
ory are equivalent to each other.
Theorem 1 For each consistent and definite set of initial
statements I, there exists a finite number of initial S5-states
(M1, s1), . . . , (Mk, sk) such that for every S5-state (M, s)
of I there exists 1 ≤ i ≤ k such that (M, s) is equivalent to
(Mi, si). Furthermore, if I is complete then k = 1.

Actions
In mA+ , an agent is allowed to use three types of actions:
ontic actions (or world-changing actions), sensing actions,
and announcement actions. Intuitively,
• An ontic action is used to modify certain properties of the

world—e.g., the agent A takes the key in Example 1; an
agent turns a switch, causing the light to turn on;

• A sensing action is used by an agent to refine its belief
about the world, by making observations (e.g., agent C
watches the agent A); the effect of the sensing action is to
reduce the amount of uncertainty of the agent;

• A truthful announcement action is used by an agent
to affect the beliefs of the agents receiving the
communication—we operate under the assumption that
agents receiving an announcement always believe what
is being announced.

Each action a ∈ A falls in exactly one of the three cate-
gories. We consider the following statements for a ∈ A.
• Executability condition: an executability condition is a

statement of the form:
executable a if ψ (2)

where ψ is a belief formula; a is executable if ψ is true.
• Dynamic law: let a be an ontic action; a dynamic law is a

statement of the form:

a causes ` if ψ (3)
where ` is a fluent literal and ψ is a belief formula. The
part “ if ψ” will be omitted when ψ is a tautology. Intu-
itively, if the state of the world and of the beliefs matches
the condition ψ, then the real state of the world is affected
by the change described by ` after the execution of a.

• Observation law: let a be a sensing action; an observation
law has the form:

a determines f (4)
where f is a fluent. Statements of type (4) encode a sens-
ing action a which enable the agent(s) to learn about the
value of the fluent f .

• Announcement law: let a be an announcement action; an
announcement law has the form:

a announces ϕ (5)
where ϕ is a formula.

Example 6 The actions for the domain in Example 1:
• distract(x, y): x distracts y so that y does not watch x.

The action is executable if y is watching x. This can be
expressed by the law:

distract(x, y) executable watching(y, x)

The action causes y not to watch x. This is represented by
distract(x, y) causes ¬watching(y, x).

• get key(x): x takes the key. A cannot take the key while
B is watching A. This is expressed as follows.

get key(A) executable ¬watching(B,A).
get key(A) causes has key(A).
get key(x) causes has key(x) for x ∈ {B,C}.

• signal(x, y): x signals y to watch x;
signal(x, y) executable ¬watching(y, x).
signal(x, y) causes watching(y, x).

• lookAround(x, y): x is looking around for y and will be
able to determine whether y is present or not.

lookAround(x, y) determines present(y).

• shout(x): x announces his presence;
shout(x) announces present(x). 2

Observability of Actions
In a single-agent setting, it is reasonable to assume that if an
agent observes an action occurrence and knows the action
specification then he/she will be aware of the effects of the
action. In a multi-agent setting, it is possible for an agent
to be completely unaware of an action occurrence—e.g., an
agent may be too far to hear an announcement. It is also pos-
sible for an agent to be aware of the action occurrence (e.g.,
performed by another agent) but unaware of the effects of
the action. For example, an agent might be told that some-
one fires a shot but unaware of whether the bullet hit the
target, i.e., he is aware of the action occurrence but unaware
of the result of the action. Even when an agent executes an
action, he might not observe the its effects.

Given an action occurrence, we will divide agents into
three groups: (a) those aware of the action occurrence and
of the effects of the actions, (b) those aware of the action
occurrence but unaware of the effects of the actions, and (c)
those completely oblivious of both the action occurrence and
its effects. These categories are called frames of reference,
and are dynamic in nature. Frames of reference are specified
by a class of statements, called observation axioms:

x observes a if ϕ (6)
x aware of a if ϕ (7)

where x is a set of agents, a is an action, and ϕ is a flu-
ent formula. Intuitively, a statement of the form (6) indicates
that if the action a occurs and the condition ϕ is true in the
real state of the world, then x is the set of agents who are
completely knowledgeable about the action occurrence and
its consequences. A statement of the form (7) indicates that,
if the action a occurs and the condition ϕ is true in the real
state of the world, then x is the set of agents who are aware
of the action occurrence but cannot observe the action’s ef-
fects. If an agent does not occur in an observation axiom
with respect to an action occurrence, or if the condition ϕ is
not satisfied, then the agent will be oblivious of the action
occurrence and its consequences. For simplicity, we assume
that, in the case of ontic actions, each agent is either fully
aware or completely oblivious. For all other types of actions,
all three frames of reference may be present.

Example 7 The following set of observation axioms de-
scribes the observability of agents in the domain in Exp. 6:

{x, y} observes distract(x, y)
{x} observes get key(x)
{y} observes get key(x) if watching(y, x)
{x, y} observes signal(x, y)
{x} observes lookAround(x, y)
{A,B,C} observes shout(x)

where x and y denote distinct agents. 2

A domain specification (or domain) D in mA+ is a col-
lection of statements of the forms (2)-(7). D is consistent
if for every pair of dynamic laws (a causes f if ϕ) and
(a causes ¬f if ψ) in D, ϕ ∧ ψ is inconsistent.

Definition 8 (Action Theory) An action theory in mA+ is
a pair (D, I) where D is a consistent domain specification
and I is a set of initially statements.

For simplicity, we will not consider the action executors in
the formalization in this paper. We will also assume that
agents do not reason about action occurrences retrospec-
tively.5 Taking all of these aspects into consideration will
be an important task for our future work.

Semantics of mA+
Let D be a consistent domain specification. Given a state
(M, s) and an action a ∈ A which occurs in the executabil-
ity law6 a executable ψ in D, we say that a is executable
in a state (M, s) if (M, s) |= ψ. Let us define

α(a,M, s) =

{
i ∈ AG [i observes a if ϕ] ∈ D,

(M, s) |= ϕ

}
β(a,M, s) =

{
i ∈ AG [i aware of a if ϕ] ∈ D,

(M, s) |= ϕ

}
and γ(a,M, s) = AG \ (α(a,M, s) ∪ β(a,M, s)). Intu-
itively, α(a,M, s), β(a,M, s), and γ(a,M, s) are the agents
that are fully aware, partially aware, and oblivious about the
effects of the execution of action a in the state (M, s). In
the following, we will often write α, β, and γ instead of
α(a,M, s), β(a,M, s), γ(a,M, s) respectively, whenever it
is clear from the context what a and (M, s) are.

We will now define the semantics of mA+ by con-
structing, for each action a executable in a state (M, s),
an update template ωaM,s = (Σa,Γ) with Σa =

(Σa, {Ri}, pre, sub). We will assume that the executability
condition a executable ψ belongs to D.

Sensing Actions
For an observation law a determines f in D, ωaM,s is de-
fined as follows:

• Σa = {σ, τ, ε} and Γ = {σ, τ};
• Ri = {(σ, σ), (τ, τ), (ε, ε)}, for i ∈ α;
• Ri = {(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)}, for i ∈ β;

5An agent observing that a dead turkey could infer that a shoot-
ing action has occurred and the number of bullets has changed, etc.

6Recall that we assume that each action appears only in one
executability law.

• Ri = {(σ, ε), (τ, ε), (ε, ε)}, for i ∈ γ;
• pre(σ) = f ∧ ψ, pre(τ) = ¬f ∧ ψ, and pre(ε) = >.
• sub : Σa → SUBLAG where sub(x) = ∅ for x ∈ Σa,

i.e., sub maps every event to the identity substitution.
Intuitively, σ, τ , and ε, called events, represent the differ-
ent views of an occurrence of a. σ (resp. τ) indicates an
event determining that f is true (resp. false) happens while
ε encodes that nothing happens. σ and τ are the designated
events, representing what occurs, and thus their precondition
requires f ∧ ψ and ¬f ∧ ψ, respectively. ε encodes that the
action does not occur, which is what oblivious agents will be
seeing and thus is not a designated event. Because sensing
actions do not change the real state of the world, sub maps
every event to the identity substitution. The relations Ri in-
dicate that agents in α would be able to distinguish world
states in which f is true from those in which f is false; those
in β are aware of the fact that α learn the value of f but
they themselves are oblivious of such value; agents in γ are
completely unaware of the action execution.

Example 8 Let us consider the domain D given in the Ex-
amples 6-7 and the state (U1, s1) in Fig. 5 (left). Assume
that lookAround(A,C) is executed. We have that α = {A},
β = ∅, and γ = {B,C}. This leads to the update template
on the right of Fig. 5 with pre(σ) = present(C), pre(ε) =
>, present(τ) = ¬present(C), and sub(x) = ∅ for every
x ∈ {σ, τ, ε}. The result of executing lookAround(A,C) in

Figure 5: State (U1, s1) and ωlookAround(A,C)
U1,s1

(U1, s1) is the state in Fig. 6.

Figure 6: Execution of lookAround(A,C) in (U1, s1)

Proposition 2 Let D be a consistent domain, (M, s) be a
state, and a be a sensing action that is executable in (M, s).
Assume that (M ′, s′) ∈ (M, s)⊗ ωaM,s. Then, it holds that

• ∀f ∈ SensD(a), [(M ′, s′) |= Cα` iff (M, s) |= `] where
` ∈ {f,¬f};

• ∀f ∈ SensD(a)[(M ′, s′) |= Cβ(Cαf ∨Cα¬f)];
• ∀i ∈ γ(a,M, s),∀`[(M ′, s′) |= Bi` iff (M, s) |= Bi`]

where SensD(a) = {f | a determines f in D}.

The proposition shows that agents in α(a,M, s) will
know the truth values of the sensed fluents; the agents in
β(a,M, s) know that the agents in α(a,M, s) know the truth
values of the sensed fluents but do not know the truth value
of these fluents; and nothing changes for oblivious agents.

Announcement Actions
For an announcement law a announces ϕ in D, ωaM,s is
defined as follows:

• Σa = {σ, τ, ε} and Γ = {σ};
• Ri = {(σ, σ), (τ, τ), (ε, ε)}, for i ∈ α;
• Ri = {(σ, σ), (τ, τ), (ε, ε), (σ, τ), (τ, σ)}, for i ∈ β;
• Ri = {(σ, ε), (τ, ε), (ε, ε)}, for i ∈ γ;
• pre(σ) = ϕ ∧ ψ, pre(τ) = ¬ϕ ∧ ψ, and pre(ε) = >;
• sub : Σa → SUBLAG where sub(x) = ∅ for x ∈ Σa.

Update template for an announcement is slightly different
from that of sensing actions in that there is only one desig-
nated event, which says that ϕ is true and there is no link
from τ to σ for agent in β. Ri indicates that after the execu-
tion, i ∈ α will know ϕ while i ∈ β ∪ γ does not. However,
i ∈ β will know that j ∈ α knows about ϕ.

Example 9 Assume that shout(C) is executed in the state
(U1, s1) in Fig. 5 (left). We have that α = {A,B,C},
β = γ = ∅. The update template is on the left of Fig. 7 with
pre(σ) = present(C), pre(τ) = ¬present(C), pre(ε) =
>, and sub(x) = ∅ for every x ∈ {σ, τ, ε}. The result of ex-
ecuting shout(C) in (U1, s1) is on the right of Fig. 7, which
is equivalent to the state with a single state symbol (σ, s1) in
the shaded box, due to result of the previous section.

Figure 7: ωshout(C)
U1,s1

and Result

The next proposition is similar to Proposition 2.

Proposition 3 Let D be a consistent domain, (M, s) be a
state, and a announces ϕ belongs to D. Assume that a is
executable in (M, s) and (M ′, s′) ∈ (M, s)⊗ ωaM,s. Then,

• (M ′, s′) |= Cαϕ;
• (M ′, s′) |= Cβ(Cαϕ ∨Cα¬ϕ) and;
• ∀i ∈ γ(a,M, s),∀`′.[(M ′, s′)|=Bi`

′ iff (M, s)|=Bi`
′].

Ontic Actions
For an ontic action a in D, ωaM,s is defined as follows:

• Σa = {σ, ε} and Γ = {σ};
• Ri = {(σ, σ), (ε, ε)}, for i ∈ α;
• Ri = {(σ, ε), (ε, ε)}, for i ∈ γ;
• pre(σ) = ψ and pre(ε) = >.

• sub : Σa → SUBLAG where sub(ε) = ∅ and
sub(σ) = {f → ϕ ∨ f | a causes f if ϕ in D} ∪

{f → ¬ϕ ∧ f | a causes ¬f if ϕ in D}
where e+a = {f | a causes f if ϕ in D} and
e−a = {f | a causes ¬f if ϕ in D}.

Update template for an ontic action is simpler than those
for sensing/announcement actions, since there are only two
groups of agents: those who aware of the effects of the ac-
tion and those who are oblivious. Similar to announcement
actions, there is only one designated event. The effects of an
action occurrence is that only agents who are aware of its
occurrence will know the effects.
Example 10 Let us continue with the domain D given
in the Exp. 6-7 and the state (U2, s1) which is the re-
sult of the execution of shout(C) in (U1, s1) given
in Fig. 5 (left). For the simplification of the presen-
tation, we use the state with the single symbol in the
shaded box of the state on the right of Fig. 7 and
U2[S] = {s1}, U2[A]=U2[B]=U2[C]={(s1, s1)}, and
s1 is given in Exp. 2. We observe that distract(A,B)
is executable in (U2, s1) and α={A,B}, β=∅, and
γ={C}. This leads to the update template on the
left of Fig. 8 with pre(σ)=watching(B,A) and
pre(ε)=> and sub(σ)={watching(B,A) → false}
and sub(ε)=∅. The state (U2, s1), the update template,
and the result of the execution of distract(A,B)
is given in Fig. 8 (top-left, top-right, bottom and
shaded). Observe that the interpretation of (σ, s1) is
{custody(A,B), present(C), present(A), present(B)}.
However, the interpretation of (ε, s1) is {watching(B,A),
custody(A,B), present(C), present(A), present(B)}.

Figure 8: (U2, s1), ω
distract(A,B)
U2,s1

, and result of the execution of
distract(A,B) in (U2, s1)

Proposition 4 Let D be a consistent domain, (M, s) be a
state, and a be a world-altering action that is executable in
(M, s). Assume that (M ′, s′) ∈ (M, s) ⊗ ωaM,s. Then, the
following holds
• for every i ∈ α(a,M, s), a causes ` if ϕ in D, and
u, v ∈M [S],
– (σ, u) |= ` if (M,u) |= ϕ; and
– (u, v) ∈M [i] iff ((σ, u), (σ, v)) ∈M ′[i]

• for every i ∈ γ(a,M, s) and literal `, (M ′, s′) |= Bi` iff
(M, s) |= Bi`.

The proposition states that agents in α(a,M, s) know the
effects of the action execution while all other agents do not
see any changes.

Entailment
The entailment relation in mA+ action theories is defined
between action theories and queries of the form:

ϕ after Plan (8)
where ϕ is a belief formula and Plan is defined as follows:

Definition 9 (Plan) For a domain description D,
• The empty plan [] is a plan;
• If a ∈ A and P is is a plan then (a;P) is also a plan;
• If ϕ is a formula and P1, P2 are plans, then

if ϕ then P1 else P2 is also a plan.

We will next define the notion of entailment between
mA+ action theories and queries of the form (8).

A belief state (or b-state) is a set of states. For a b-state
B and an action a, we say that a is executable in B if a is
executable in every state (M, s) in B. With a slight abuse of
notation, we define

ΦD(a,B) =

{
{⊥} if a is not executable in some states in B⋃

(M,s)∈B(M, s)⊗ ωaM,s otherwise
where ⊥ denotes that the execution of a in B fails.

Let P be a plan and B be a b-state. The set of b-states re-
sulting from the execution of P inB, denoted by Φ∗D(P,B),
is defined as follows.
• If P is the empty plan then Φ∗D(P,B) = B;
• If P is a plan of the form (a;P ′) then

Φ∗D(P,B) = Φ∗D(P ′,ΦD(a,B))
• If P is of the form if ϕ then P1 else P2, then

Φ∗D(P,B) =
⋃

(M,s)∈B

Ξ∗D(P,M, s)

where

Ξ∗D(P,M, s) =

{
Φ∗D(P1, {(M, s)}) if (M, s) |= ϕ
Φ∗D(P2, {(M, s)}) otherwise

where, we define {⊥, . . . } = {⊥} and ΦD(P, {⊥}) = {⊥}
for every plan P .

Intuitively, the execution of P inB can go through several
paths, each path might finish in a set of states. It is easy to
see that if one of the states reached on a path during the
execution of P is ⊥ (the failed state) then the final result is
the execution of P in B is {⊥}. Φ∗D(P,B) = {⊥} indicates
that the execution of P in B fails.

Definition 10 (Initial State/b-State) Let (D, I) be an ac-
tion theory. An initial state of (D, I) is a state (M, s) such
that for every statement [initially ϕ] in I , (M, s) |= ϕ.

The initial b-state of (D, I) is the collection of all initial
states of (D, I).

We are now ready to define the notion of entailment.

Definition 11 (Entailment) An action theory (D, I) entails
the query ϕ after Plan, denoted (D, I)|=ϕ after Plan, if
• Φ∗D(Plan, I0) 6= {⊥} and
• (M, s) |= ϕ for each (M, s) ∈ Φ∗D(Plan, I0)

where I0 is the initial b-state of (D, I).

It is easy to see that for the action theory (D, I), where
D is the domain given in Exp. 6-7 and I is given
in Exp. 5 (represented by (U1, s1) in Fig. 5, left), and
α = shout(C); signal(A,C); distract(A,B); get key(A)

it holds that (D, I) |= CA,Chas key(A) after α and
(D, I) |= BB¬has key(A) after α.

Related Work and Discussion
The proposed language, mA+ , is built on the advances
made in RAC and DEL. It is strongly related to our pre-
vious attempts in developing an action language for multi-
agent systems but differs in several ways. In (Baral et al.
2010), we suggested that ASP can be used for multi-agent
reasoning; we showed how ASP can be used to find Kripke
models of a modal theory, how ASP can be used to formu-
late the muddy children and the sum-and-product problems.
In the process, we formulated the global announcement and
ask-and-truthfully answer actions in ASP. In (Pontelli et al.
2010), we presented the multi-agent action language mA
and showed how reasoning and planning can be done inmA
using Prolog. In (Baral and Gelfond 2010), we extrapolated
the work in (Baltag and Moss 2004) on multi-agent reason-
ing in the context of dynamic epistemic logic to the case
where agents are classified into three types and suggest di-
rections to combine DEL with RAC.

As we have mentioned, mA+ differs significantly from
mA in that it allows for the dynamic specification of roles
of agent and separate the specification of action effects
from the agents’ role. This is also a key difference between
mA+ and DEL’s formalisms proposed in (Baltag, Moss, and
Solecki 1998; Baltag and Moss 2004; van Benthem, van Ei-
jck, and Kooi 2006). However, the semantics of mA+ relies
on the update models developed in this line of works.

In (Herzig, Lang, and Marquis 2005), an approach to rea-
soning about actions and beliefs in multi-agent domains, re-
lying on update models, has been proposed. As with other
frameworks, this approach does not separate the specifica-
tion of agents’ roles and action effects and thus differs from
mA+ in this regards. Furthermore, the approach does not
consider announcement actions and does not discuss how
such an update model should be constructed.

The idea of using progression-based planning based on
epistemic states and update models has recently been ex-
panded in (Bolander and Andersen 2011), with particular fo-
cus on decidability issues, and working with restricted forms
of accessibility in the Kripke structures; (Löwe, Pacuit, and
Witzel 2010) builds on DEL to achieve an analogous objec-
tive. Neither of these proposals designs an action language
for domain descriptions or separately addresses the declara-
tive specification of levels of observability. Indeed, (Bolan-
der and Andersen 2011) indicates the development of lan-
guages suitable for describing actions in a form closer to tra-
ditional planning, with parameters for describing observers
as one of the main problems left open.

Let us conclude the section with a discussion on nonde-
terministic actions. Nondeterminism occurs for various rea-
sons. We will consider two different types: sensing actions
that may fail and nondeterministic ontic actions. They can
be added to mA+ using the following syntax.

a may determine f (9)
a causes `1 ∨ . . . ∨ `k if ϕ (10)

Statements of the type (9) encode a sensing action a which

enable the agent(s) to learn about the value of the fluent f .
However, amight fail leaving the agent unaware of the value
of the fluent being sensed. Statements of the type (10) indi-
cate that the action a might cause any of `1, . . . , `k to be-
come true, still preserving the consistency of the state of the
world. Update templates of these types of actions are given
next. We will still use ψ to denote the executability of an
action a. For an observation law a may determine f exe-
cutable in D, ωaM,s is defined as follows:

• Σa = {σ, τ, ε, ρ} and Γ = {σ, τ};
• Ri = {(σ, σ), (τ, τ), (ε, ε), (ρ, ρ)}, for i ∈ α;
• Ri = {(σ, σ), (τ, τ), (ε, ε), (ρ, ρ), (σ, τ), (τ, σ), (ρ, σ),

(σ, ρ), (ρ, τ), (τ, ρ)}, for i ∈ β;
• Ri = {(σ, ε), (τ, ε), (ρ, ε), (ε, ε)}, for i ∈ γ;
• pre(σ) = f ∧ ψ, pre(τ) = ¬f ∧ ψ, pre(ρ) = ψ, and
pre(ε) = >.

• sub : Σa → SUBLAG where sub(x) = ∅ for x ∈ Σa,
i.e., sub maps every event to the identity substitution.

The update template for an ontic nondeterministic action can
be built using a similar construction given in the previous
section for ontic actions. We need some extra notations. Let

Da =

 a causes `11 ∨ . . . ∨ `1k1 if ϕ1

. . .
a causes `n1 ∨ . . . ∨ `nkn if ϕn


be the set of laws of the form 10 in D. We denote with
S1, . . . , Sn a sequence of sets of literals such that ∅ 6= Si ⊆
{`i1, . . . , `iki} and Si is consistent. Let S denote the set of all
these sequences. Let

D(S1, . . . , Sn) = D \Da∪
n⋃
i=1

{a causes l if ϕi | l ∈ Si}.

Let σS1,...,Sn
be the substitution for the event σ defined

for the action a with respect to D(S1, . . . , Sn) as defined
in the previous section. We now define ωaM,s for an ontic-
nondeterministic action a that is executable in (M, s):
• Σa = {σ(Ŝ) | Ŝ ∈ S} ∪ {ε} and Γ = {σ(Ŝ) | Ŝ ∈ S};
• Ri = {(u, u) | u ∈ Σa}, for i ∈ α;
• Ri = {(u, ε) | u ∈ Σa}, for i ∈ γ;
• pre(σ(Ŝ)) = ψ for each Ŝ ∈ S and pre(ε) = >.
• sub:Σa→SUBLAG where sub(σ(Ŝ))=σŜ and sub(ε)=∅.

Conclusion and Future Work
We presented a high-level action description language,
mA+ , for multi-agent domains. The language semantics is
defined via action and update models. It separates the speci-
fication of action effects and the agents’ roles. We also iden-
tify a reasonably large classes of action theories for which
hypothetical queries can be answered and planning can be
computed using state-of-the-art reasoners and planners, re-
spectively. This will be our focus in the immediate future.

Acknowledgement Chitta Baral acknowledges the support
by ONR-MURI and IARPA. Enrico Pontelli and Tran Cao
Son acknowledge the support by NSF-IIS 0812267 grant.

References
Baltag, A., and Moss, L. 2004. Logics for epistemic pro-
grams. Synthese.
Baltag, A.; Moss, L.; and Solecki, S. 1998. The logic of pub-
lic announcements, common knowledge, and private suspi-
cions. In 7th TARK, 43–56.
Baral, C., and Gelfond, M. 1997. Reasoning about effects
of concurrent actions. J. Log. Program. 31(1-3):85–117.
Baral, C., and Gelfond, G. 2010. On representing actions in
multi-agent domains. In Proceedings of the Symposium on
Constructive Mathematics.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2010.
Modeling multi-agent scenarios involving agents knowledge
about other’s knowledge using asp. In Proceedings of the 9th
International Conference on Autonomous Agents and Multi-
agent Systems, 259–266. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Baral, C.; Gelfond, G.; Pontelli, E.; and Son, T. C. 2011. An
action language for mutli-agent domains. Technical report.
Baral, C. 1995. Reasoning about Actions : Non-
deterministic effects, Constraints and Qualification. In Pro-
ceedings of the 14th International Joint Conference on Arti-
ficial Intelligence, 2017–2023. Morgan Kaufmann Publish-
ers, San Francisco, CA.
Boella, G., and van der Torre, L. W. N. 2005. Enforce-
able social laws. In Dignum, F.; Dignum, V.; Koenig, S.;
Kraus, S.; Singh, M. P.; and Wooldridge, M., eds., 4rd Inter-
national Joint Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht,
The Netherlands, 682–689. ACM.
Bolander, T., and Andersen, M. 2011. Epistemic Planning
for Single and Multi-Agent Systems. Journal of Applied
Non-Classical Logics 21(1).
Brown, F., ed. 1987. Proceedings of the 1987 worskshop on
The Frame Problem in AI. Morgan Kaufmann, CA, USA.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning about Knowledge. MIT press.
Gelfond, M., and Lifschitz, V. 1993. Representing actions
and change by logic programs. Journal of Logic Program-
ming 17(2,3,4):301–323.
Gelfond, M., and Lifschitz, V. 1998. Action languages. ETAI
3(6).
Gerbrandy, J. 2006. Logics of propositional control. In
Nakashima, H.; Wellman, M. P.; Weiss, G.; and Stone, P.,
eds., 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), Hakodate,
Japan, May 8-12, 2006, 193–200. ACM.
Giunchiglia, E., and Lifschitz, V. 95. Dependent fluents.
In Proceedings of the 14th International Joint Conference
on Artificial Intelligence, 1964–1969. Morgan Kaufmann
Publishers, San Mateo, CA.
Giunchiglia, E., and Lifschitz, V. 98. An action language
based on causal explanation: preliminary report. In Proceed-
ings of AAAI 98, 623–630.

Giunchiglia, E.; Kartha, G.; and Lifschitz, V. 1997. Rep-
resenting action: indeterminacy and ramifications. Artificial
Intelligence 95:409–443.
Hanks, S., and McDermott, D. 1987. Nonmonotonic logic
and temporal projection. Artificial Intelligence 33(3):379–
412.
Herzig, A., and Troquard, N. 2006. Knowing how to play:
uniform choices in logics of agency. In Nakashima, H.;
Wellman, M. P.; Weiss, G.; and Stone, P., eds., 5th Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2006), Hakodate, Japan, May 8-12,
2006, 209–216.
Herzig, A.; Lang, J.; and Marquis, P. 2005. Action Progres-
sion and Revision in Multiagent Belief Structures. In Sixth
Workshop on Nonmonotonic Reasoning, Action, and Change
(NRAC).
Kartha, G., and Lifschitz, V. 1994. Actions with indirect
effects: Preliminary report. In KR 94, 341–350.
Kartha, G. 1994. Two counterexamples related to Baker’s
approach to the frame problem. Artificial Intelligence
69:379–391.
Leibniz, G. c. 1679. An Introduction to a Secret Encyclop-
dia.
Lifschitz, V. 1987. Formal theories of action. In Brown,
F. M., ed., The Frame Problem in Artificial Intelligence, Pro-
ceedings of the 1987 Workshop, 35–58.
Lifschitz, V. 1997. On the Logic of Causal Explanation
(Research Note). Artif. Intell. 96(2):451–465.
Lin, F., and Reiter, R. 1994. State constraints revisited. Jour-
nal of Logic and Computation 4(5):655–67. Special Issue on
Action and Processes.
Lin, F., and Shoham, Y. 1995. Provably correct theories of
action. Journal of the ACM 42(2):293–320.
Löwe, B.; Pacuit, E.; and Witzel, A. 2010. Planning Based
on Dynamic Epistemic Logic. Technical report, ILLC, Uni-
versity of Amsterdam.
McCain, N., and Turner, H. 1995. A causal theory of ramifi-
cations and qualifications. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence, 1978–
1984. Morgan Kaufmann Publishers, San Mateo, CA.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence, vol-
ume 4. Edinburgh: Edinburgh University Press. 463–502.
McCarthy, J. 1959. Programs with common sense. In Pro-
ceedings of the Teddington Conference on the Mechaniza-
tion of Thought Processes, 75–91. London: Her Majesty’s
Stationery Office.
McCarthy, J. 1980. Circumscription—a form of non-
monotonic reasoning. Artificial Intelligence 13(1, 2):27–
39,171–172.
McDermott, D., and Doyle, J. 1980. Nonmonotonic logic I.
Artificial Intelligence 13(1,2):41–72.
Meyer, J.-J. 2000. Dynamic logic for reasoning about ac-
tions and agents. In Minker, J., ed., Logic-Based Artificial

Intelligence. Boston/Dordrecht: Kluwer. 281–311. Chapter
13.
Newton, I. 1687. Philosophiae Naturalis Principia Mathe-
matica.
Pontelli, E.; Son, T. C.; Baral, C.; and Gelfond, G. 2010.
Logic programming for finding models in the logics of
knowledge and its applications: A case study. Theory and
Practice of Logic Programming 10(4-6):675–690.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13(1,2):81–132.
Reiter, R. 1991. The frame problem in the situation calculus:
A simple solution (sometimes) and a completeness result for
goal regression. In Lifschitz, V., ed., Artificial Intelligence
and Mathematical Theory of Computation. Academic Press.
359–380.
Reiter, R. 2001. KNOWLEDGE IN ACTION: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. MIT Press.
Sandewall, E. 1994. Features and Fluents: The representa-
tion of knowledge about dynamical systems. Oxford Univer-
sity Press.
Sauro, L.; Gerbrandy, J.; van der Hoek, W.; and Wooldridge,
M. 2006. Reasoning about action and cooperation. In AA-
MAS ’06: Proceedings of the fifth international joint confer-
ence on Autonomous agents and multiagent systems, 185–
192. New York, NY, USA: ACM.
Scherl, R., and Levesque, H. 1993. The frame problem
and knowledge producing actions. In Proceedings of the
12th National Conference on Artificial Intelligence, 689–
695. AAAI Press.
Shanahan, M. 1997. Solving the frame problem: A math-
ematical investigation of the commonsense law of inertia.
MIT press.
Spaan, M. T. J.; Gordon, G. J.; and Vlassis, N. A. 2006. De-
centralized planning under uncertainty for teams of commu-
nicating agents. In Nakashima, H.; Wellman, M. P.; Weiss,
G.; and Stone, P., eds., 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS
2006), Hakodate, Japan, May 8-12, 2006, 249–256.
Turner, H. 1997. Representing actions in logic programs
and default theories. Journal of Logic Programming 31(1-
3):245–298.
van Benthem, J.; van Eijck, J.; and Kooi, B. P. 2006. Logics
of communication and change. Inf. Comput. 204(11):1620–
1662.
van der Hoek, W.; Jamroga, W.; and Wooldridge, M. 2005.
A logic for strategic reasoning. In Dignum, F.; Dignum,
V.; Koenig, S.; Kraus, S.; Singh, M. P.; and Wooldridge,
M., eds., 4rd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2005), July 25-29,
2005, Utrecht, The Netherlands, 157–164. ACM.
van Ditmarsch, H.; van der Hoek, W.; and Kooi, B. 2007.
Dynamic Epistemic Logic.

