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ABSTRACT

Reasoning about actions forms the basis of many tasks such as prediction, planning, and
diagnosis in a dynamic domain. Within the reasoning about actions community, a broad
class of languages, called action languages, has been developed together with a methodology
for their use in representing and reasoning about dynamic domains. With a few notable
exceptions, the focus of these efforts has largely centered around single-agent systems.
Agents rarely operate in a vacuum however, and almost in parallel, substantial work has
been done within the dynamic epistemic logic community towards understanding how the
actions of an agent may effect not just his own knowledge and/or beliefs, but those of his
fellow agents as well. What is less understood by both communities is how to represent and

reason about both the direct and indirect effects of both ontic and epistemic actions within a
multi-agent setting. This dissertation presents ongoing research towards a framework for
representing and reasoning about dynamic multi-agent domains involving both classes of
actions.

The contributions of this work are as follows: the formulation of a precise mathematical
model of a dynamic multi-agent domain based on the notion of a transition diagram; the
development of the multi-agent action languages m+ and m based upon this model,
as well as preliminary investigations of their properties and implementations via logic
programming under the answer set semantics; precise formulations of the temporal projection,
and planning problems within a multi-agent context; and an investigation of the application
of the proposed approach to the representation of, and reasoning about, scenarios involving
the modalities of knowledge and belief.
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Chapter 1

INTRODUCTION

1.1 Motivation

Reasoning about actions and change has been one of the cornerstones of artificial in-
telligence research ever since McCarthy’s description of the “advice taker system” [35].
Since that time, a considerable body of work on a broad class of languages, called action
languages, together with a methodology for their use has been developed [2, 26, 27]. A
distinguishing characteristic of such languages is their simple syntax and semantics, based
on a careful subset of natural language, which allow for concise and natural representations
of huge transition systems, as well as elegant solutions to both the frame and ramification
problems [5, 16, 26, 32, 34, 36, 37]. With a few notable exceptions, [16, 33], the focus of
such languages has been on representing an agent’s knowledge concerning ontic actions

(i.e. those which primarily affect the physical environment). Agents rarely operate in iso-
lation, oftentimes needing to exchange information, and consequently almost in parallel,
substantial work has been done within the dynamic epistemic logic community towards
understanding epistemic actions (i.e. those which primarily affect an agent’s knowledge or
beliefs) [4, 19, 44] and to a lesser extent ontic actions [43]. What is less understood by both
communities is how to represent and reason about the direct and indirect effects of both
classes of actions in a multi-agent setting. In the following sections we briefly present some
of the questions that this dissertation seeks to begin answering in the context of the Classical
Muddy Children Problem [19], and a multi-agent extension of the Lin’s Briefcase Problem
[12, 32] (more detailed examinations of these and other domains will be presented later in
this dissertation).
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1.1.1 The Classical Muddy Children Problem

The Classical Muddy Children Problem [19], presented in Example 1.1, is a canonical
multi-agent domain illustrating how both the individual and collective knowledge of the
agents in a domain changes as a consequence of communication.

Example 1.1 (The Classical Muddy Children Problem). N children are playing together

outside and during their play, some of them get mud on their foreheads. Each child can see

the mud on the foreheads of their siblings, but cannot tell whether or not they themselves

are muddy. This fact is common knowledge among them. Their father comes along and

announces that at least one of them is muddy. He then repeatedly asks “do you know whether

or not you are muddy” until all of the children reply in the affirmative. Assuming that all of

the children are intelligent, honest, and answer in unison, it can be shown that if K children

are muddy, then after the K tℎ time the father asks his question, the children will all reply

“yes”. In this dissertation we concern ourselves with an instance of this problem where

N = K = 3. ⋄

Within the dynamic epistemic logic community this particular domain is modeled by a
sequence of graphs, called Kripke worlds, shown in Figures 1.1 to 1.4. In this representation,
there are three children A, B, and C , and each node within a Kripke world defines a possible
physical configuration of the world (node 111 denotes the possibility that all of the children
are muddy while node 101 denotes the possibility that only A and C are). The edges of a
Kripke world are labeled by agents1, and an edge of the form (!1, �, !2) is read2 as: “If �
inhabits possible world !1, then he understands himself to be in possible world !2.” In this

1Unlabeled edges are understood to be labeled by the set of all agents within the domain.
2The reading given here is taken from [19]; later in this work an alternative reading is proposed.
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way, Kripke worlds represent both the ontic and epistemic properties of a state of the domain.
Each interaction between the father and the children removes certain possible worlds from
consideration, as shown in the aforementioned figures.

110 010

111 011

100 000

101 001

A

C C

B
A

B B

C

A

B

A

C

Figure 1.1: A Kripke world depict-
ing the initial state of the Classical
Muddy Children Problem.

110 010

111 011

100

101 001

A

C C

A

B B

A

B

C

Figure 1.2: A Kripke world de-
picting the consequences of the fa-
ther’s announcement that at least
one of the children is muddy.

110

111 011

101

C

A

B

Figure 1.3: A Kripke world de-
picting the results of the children’s
first announcement that they do not
know whether they’re muddy or
not.

111

Figure 1.4: A Kripke world depict-
ing the results of the children’s sec-
ond announcement that they do not
know whether they’re muddy or
not.

This approach seems to suggest that as is the case with single-agent domains, a multi-
agent one may be described as a transition system, whose nodes represent states of the
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domain, and whose edges represent actions [2, 26, 27]. Unlike the single-agent case however,
in a multi-agent system, states of the domain are modeled by Kripke world, a more complex
kind of object than a set of fluents. Another key distinction, is that actions such as a public
announcement don’t have what are called ontic effects, rather their effects are epistemic in
quality, meaning they alter what the agents know/believe about the domain, rather than its
physical properties.

From a knowledge representation standpoint, this raises a number of interesting questions:

• How can we define a language that will allow us to clearly, concisely, and in an
elaboration tolerant manner, describe transition systems of this kind?

• Can our descriptions be written in such a way as to shorten the distance between the
specification of a multi-agent system and its representation?

• In addition to public announcements, what other categories of actions are there that
distinguish multi-agent domains from single-agent ones?

• Can we define the semantics of our language(s) in such a way as to be amenable to
translation into a logic program, with the ultimate goal of automating various reasoning
tasks such as temporal projection, planning, and diagnostic reasoning.

Each of these questions will be elaborated upon in subsequent chapters. Before we
continue however, we present a similar discussion regarding a multi-agent extension of the
Lin’s Briefcase Domain of [32].

1.1.2 A Multi-Agent Lin’s Briefcase Domain

Within the knowledge representation community, the Lin’s Briefcase Domain of [32]
was an important thought experiment capturing some of the difficulties in reasoning about

4



both the direct and indirect effects of actions. A multi-agent variant of this domain, first
presented in [12], is shown in Example 1.23.

Example 1.2 (Multi-Agent Lin’s Briefcase Domain). Three agents,A,B, andC , are together
in a room with a locked briefcase which contains a coin. The briefcase is locked by two

independent latches, each of which may be flipped open (or closed) by an agent. Once both

latches are open, the briefcase is unlocked and an agent may peek inside to determine which

face of the coin is showing. ⋄

This domain seems rather simple from the standpoint of a human reasoner, but poses
some additional questions to those discussed in the prior section. Suppose that agent A flips
the latch l1 open. Intuitively, we ought to be able to conclude that l1 is open, as a direct effect
of this action, but beyond that, there are a number of possible indirect effects. For example:

• If l2 was previously open, we ought to be able to conclude that the briefcase is now
unlocked as well.

• If agents B and C observe agent A flipping l1, they ought to be aware that l1 is open,
and potentially that the briefcase is unlocked.

• If agents B and C fail to observe agentA flipping l1, their knowledge/beliefs regarding
the world ought to remain as they are.

• Etc.

Prior work on modeling single-agent domains [26, 27, 32] led to the development of
the action language which allows for the representation of both the direct and indirect
effects of actions. In a multi-agent context, actions have indirect effects which not only affect

3A full treatment of this domain is left to Chapter 4.
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a domain’s ontic properties (e.g., indirectly causing the briefcase to become unlocked), but
also may alter it’s epistemic properties (e.g., altering what agents B and C know/believe
about the briefcase). This naturally leads to the following additional research question: Can
we define an action language which will allow us to model the direct and indirect effects of
actions in a similar fashion to but in a multi-agent context?

1.2 Research Goals

The goal of this research has been to begin answering the questions posed in Sections 1.1.1
and 1.1.2 by combining the reasoning methodologies developed by both the action language
and dynamic epistemic logic communities, leading to the development of the multi-agent
action languagesm+ [11] andm [12], which allow for representing and reasoning about
dynamic multi-agent domains involving both ontic and epistemic actions. More specifically,
the previous questions have been refined to the following:

• What classes of actions distinguish multi-agent domains from single-agent ones?

• Can we formalize a high-level action language for representing dynamic multi-agent
domains such as the ClassicalMuddy Children Problem orMulti-Agent Lin’s Briefcase
Domain?

• Can we formalize the temporal projection, planning, and diagnostic reasoning prob-
lems for multi-agent domains in a similar fashion to that in [2, 26, 27]?

• Can logic programming under the answer set semantics be reasonably applied to
representing and reasoning about dynamic multi-agent domains? In particular, can
we automate the reasoning tasks of temporal projection and planning through the
application of answer set programming techniques?

6



The rest of this dissertation is structured as follows: We begin by presenting the relevant
background material, covering the basics of action languages [23], the language of update
models [4, 43], and answer set programming [6, 21, 24, 25, 31]. Once this foundation has
been established, we proceed with a discussion of the action language m+, a multi-agent
extension of the action language [27], which was first proposed in a primitive fashion in [7]
and subsequently defined in [11]. We then present the language’s application to representing
and reasoning about multi-agent domains such as the Classical Muddy Children Problem.
We next note that certain kinds of domains, such as the multi-agent variant of the classical
Lin’s Briefcase Domain [12, 32] are difficult to model in m+ due to the lack of a construct
known as a state constraint. This leads us to a presentation of the action language m,
a multi-agent variant of the language  [23, 27], followed by a detailed example of its
application for representing and reasoning about multi-agent domains for which m+ is
insufficiently expressive; Finally, we present a set of logic programs under the answer set
semantics for the purpose of solving the temporal projection and planning problems inm+,
and conclude with a discussion of future work.
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Chapter 2

BACKGROUND

In this chapter we discuss a number of fundamental concepts from both the reasoning
about actions, and dynamic epistemic logic communities which form the foundation of this
work. Section 2.1 presents an overview of the action language and its application towards
modeling dynamic single-agent domains. In Section 2.2 we discuss the dynamic epistemic
logic approach towards modeling dynamic multi-agent domains via modal logic and the
language of update models. Lastly, in Section 2.3 we cover logic programming under the
answer set semantics, which provides the implementation framework for automating various
reasoning tasks.

2.1 The Action Language

The action language is one ofmany languages used for representing dynamic domains.
It is based in part on the notion that such a domain may be modeled by a transition diagram,
whose nodes correspond to possible worlds, and whose edges are labeled by actions. Such
transition systems may be quite large, and one of the key challenges that has been met
by the reasoning about actions community has been the creation of languages capable of
representing such transition systems in a compact, intuitive, and elaboration tolerant manner.
What follows is a brief introduction to the language taken in part from [23].

8



2.1.1 Syntax

In order to describe the syntax of , we must first precisely define what is meant by a
single-agent domain.

Definition 2.1 (Single-Agent Domain). A single-agent domain, , defines a signature
Σ = ( ,) where  and  are disjoint sets of symbols respectively defining the ontic

properties of the domain (or fluents), and the elementary actions an agent may perform.1 ⋄

Example 2.2 (Lin’s Briefcase Domain). Consider the following single-agent domain from
[32]: Agent A is in a room containing a locked briefcase. The lock is governed by two

independent latches, each of which may be flipped open (or closed). Once both latches are

opened, the briefcase is unlocked and may be opened. This scenario may be modeled (in

part) by a single-agent domain, , with the following signature:

 = {open(l1), open(l2), locked}

 = {flip(l1), flip(l2), open}

⋄

In the Lin’s Briefcase Domain there are three fluents of interest, respectively denoting
whether or not the two latches are open, and whether or not the briefcase is locked. Along
the same lines, there are three actions which the agent may perform: flipping the respective
latches open or closed, and opening the briefcase.

Generally speaking, actions may have both direct and indirect effects. The direct effects
of actions are described by dynamic causal laws which are statements of the form:

a causes � if � (2.1)
1 also supports so-called compound actions but for the purposes of this work, the discussion is limited

to elementary ones.
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where a is an action, � is a fluent literal, and � is a collection of fluent literals denoting the
law’s preconditions. Laws of this form are informally read as: “performing the action a in a
state which satisfies � causes � to be true.” If � is empty, then we simply write the following:

a causes � (2.2)

The indirect effects of actions, as well as dependencies between fluents, are described by
state constraints (also known as static causal laws) which are statements of the form:

� if � (2.3)

where � is a fluent literal, and � is a conjunction of fluent literals. Statements of this form
are read as: “if � is true in a given state, then � must also be true in that state.”

Finally, the actions an agent may perform are oftentimes constrained by his environment.
Such constraints are represented by executability conditions which have the form:

impossible a if � (2.4)

where a is an elementary action and � is a collection of fluent literals, are used to describe
when an action may not be performed. Such statements are read as: “if � is true in a state,
then the action a may not be performed.”

Definition 2.3 (Action Description of ). An action description of  is a collection of
statements of the form (2.1) – (2.4). ⋄

Example 2.4 (Lin’s Briefcase Domain — Actions and their Effects). Recall the Lin’s Brief-
case Domain from Example 2.2: a single agent,A, is in a room containing a locked briefcase.

The lock is governed by two independent latches, each of which may be flipped open (or

closed). Once both latches are opened, the briefcase is unlocked and may be opened.

10



Let us use the signature defined in Example 2.2, and let � be a variable over the set

{l1, l2} representing the latches governing the briefcase. The direct effects of the action

flip(�) are represented via the following pair of dynamic causal laws:

flip(�) causes open(�) if ¬open(�) (2.5)
flip(�) causes ¬open(�) if open(�) (2.6)

Depending on the state in which the action flip(�) occurs, the action may have the indirect

effect of unlocking the briefcase. The following state constraint models the dependency

between the fluent locked and the fluents open(l1) and open(l2):

¬locked if open(l1) ∧ open(l2) (2.7)

Finally we represent the constraint that the agent may only open the briefcase if it is unlocked,

by the following executability condition:

impossible open if locked (2.8)

⋄

With the syntax of  firmly in place, we now turn our attention towards its semantics.

2.1.2 Semantics

An action description of  describes a transition diagram, whose nodes are complete
consistent sets of fluent literals which satisfy all of the state constraints of the action descrip-
tion, and whose edges are labeled by actions. We begin our discussion of the semantics by
introducing some notation.

Let Δ be an action description of  over a signature Σ, and S be a set of fluent literals
of Σ. By CnΔ(S), we denote the smallest set of fluent literals of Σ that contains S, and
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satisfies all of the state constraints of Δ. By E(�, a) we denote the set of all fluent literals, �,
such that Δ contains a dynamic causal law, a causes � if �, where � ⊆ �. Intuitively, this
set represents all of the direct effects of performing the action a in the state �. With this
notation in place, we may now define the transition system described by an action description
of.
Definition 2.5 (The Transition System). LetΔ be an action description of. The transition
system,  = ( ,), described by Δ is defined as follows:

•  is the set of all complete and consistent sets of fluent literals of Σ which satisfy the
state constraints of Δ.

•  is the set of all triples of the form (�, a, �′) such that Δ does not contain an exe-
cutability condition, impossible a if �, where � ⊆ � and:

�′ = CnΔ(E(�, a) ∪ (� ∩ �′)) (2.9)

⋄

Equation (2.9) is known as theMcCain-Turner equation and is the product of considerable
research on the nature of causality [34]. Intuitively, the arguments to CnΔ combine the direct
effects of the action, E(�, a), with those properties of the domain which carry over due to
inertia, (� ∩ �′). The consequence operator, CnΔ, extrapolates the indirect effects of the
action in accordance with the state constraints of Δ.

Example 2.6 (Transition Diagram). The action description shown in Example 2.4 defines a

transition diagram shown in part in Figure 2.1. ⋄

Having finished our discussion of action languages, we now present the dynamic epistemic
logic approach for modeling dynamic multi-agent domains.
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locked
open(l1)
¬open(l2)

locked
¬open(l1)
¬open(l2)

¬locked
open(l1)
open(l2)

locked
¬open(l1)
open(l2)

flip(l1)

flip(l2)

flip(l2)

flip(l1)

Figure 2.1: Partial transition diagram defined by the Lin’s Briefcase Domain.

2.2 Dynamic Epistemic Logic

The action language approach for representing and reasoning about dynamic single agent
domains largely focuses on modeling the ontic properties of a domain. Almost in parallel,
the field of dynamic epistemic logic arose which was largely concerned with representing
a dynamic domain’s epistemic properties. Towards this end, a number of techniques of
representing dynamic multi-agent domains have been developed, among them being the
modal logics of knowledge and belief, and the language of event/update models. In this
section we provide an overview of both of these in turn.

2.2.1 Modal Logic

In order to reason about a multi-agent domain, we need a language capable of expressing
both its ontic and epistemic properties. Modal logic provides just such a language. Before
we begin however, we must first define what we mean by a multi-agent domain.

Definition 2.7 (Multi-Agent Domain). A multi-agent domain, , is defined over a signature
Σ = (, ,) where ,  , and , are finite, disjoint, non-empty sets of symbols
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respectively defining the names of the agents within the domain, the properties of the domain
(or fluents), and the elementary actions which the agents may perform2. ⋄

2.2.1.1 Syntax

The Concealed Coin Domain [4], a variation of which is presented in Example 2.8, is
a canonical multi-agent domain used to illustrate how the knowledge/beliefs of the agents
may change as a consequence of the actions they perform.

Example 2.8 (Concealed Coin Domain). Three agents, A, B, and C , are together in a room
with a locked box which contains a coin. This fact, together with the fact that none of them

knows which face of the coin is showing is common knowledge amongst them. An agent may

unlock the box, as well as peek inside to determine which face of the coin is showing. This

scenario describes the following multi-agent domain,, with the signature Σ = (, ,),
where:

 = {A,B, C}
 = {locked, heads}

 = {unlock(�), peek(�)}

where � is variable over. ⋄

The Concealed Coin Domain describes both ontic and epistemic properties of the world.
The ontic properties, such as whether or not the strongbox is locked, and which face of the
coin is showing, are represented by the fluents locked and heads respectively. The various

2While unused in this chapter, the set of actions in a multi-agent domain plays an important role in
subsequent chapters.
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epistemic properties are described bymodal formulae. The syntax of such formulae presented
in this dissertation is taken from [19].

Definition 2.9 (Modal Formula). Let  be a multi-agent domain with the signature Σ =
(, ,). We define a modal formula as follows:

• f ∈  is a modal formula

• if ' is a modal formula, then ¬' is a modal formula

• if '1 and '2 are modal formulae, then '1 ∧ '2, '1 ∨ '2, '1 → '2, and '1 ≡ '2 are
modal formulae

• if � ∈  and ' is a modal formula, then□�' is a modal formula

• if 
 ⊆  and ' is a modal formula, then 
' and 
' are modal formulae

• nothing else is a modal formula

The set of all modal formulae that may be constructed given a particular signature, Σ, defines
a language which we denote by Σ. ⋄

Depending on the modality of interest, modal formulae may be used to represent the
individual (or collective) knowledge or belief in a given formula '. If the modality of interest
is that of knowledge, then formulae of the form□�', may be written as �', and are read
as: “agent � knows ' to be true.” Alternatively, if the modality is that of belief, then such
formulae are written as �', and taken to mean: “agent � believes that ' is true.”

Formulae of the form 
' and 
' are used to represent information about the knowl-
edge/beliefs of a group of agents, 
 . Formulae of the form 
' are read as: “Every agent in

 knows/believes ' to be true.” The fact that some belief or knowledge is shared by every
member of a group does not imply that every member of that group is aware of this. Group
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knowledge that is both shared, and understood to be shared by the members of the group, is
represented by formulae of the form 
', which are read as: “' is a common knowledge (or
a commonly held belief) by agents in 
 .” Unless otherwise noted, the modality of discourse
assumed in this work is that of belief.

2.2.1.2 Semantics

With the syntax of modal logic in place, we now introduce the foundational notion of a
Kripke world which is necessary for defining its semantics.

Definition 2.10 (Kripke World). Let  be a multi-agent domain with signature, Σ =

(, ,), and let  = {�1,… , �n}. A Kripke model, M , is a tuple of the form
(W ,�,R�1 ,… , R�n) where:

• W is a nonempty set of points3

• � is an interpretation function which for each ! ∈ W gives an interpretation, �(!) ∶
 → {⊤,⊥}

• each R�i is a binary relation onW called an accessibility relation for agent �i

A Kripke world is a pair, (M,!), where M is a Kripke model, and ! is a point in M
designated the reference point. ⋄

Points combined with their respective interpretation functions describe potential physical
configurations of the domain, while the accessibility relations represent its various epistemic
properties. Intuitively, the pair (!�, !�) ∈ R�i represents the property that from within point

3In the literature these are often also referred to as possible worlds, or states. The term points is used to
avoid overloading terminology.
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heads,
locked

!�

¬heads,
locked

!�

A,B, C A,B, C
A,B, C

Figure 2.2: A Kripke world representing the initial state of The Concealed Coin
Domain.

!� , agent �i !� to be possible. In this work, we assume the existence of an impartial, external
observer who knows which point in a Kripke structure corresponds to the frame of reference
from which one can draw conclusions about the properties of the domain.

For convenience, we adopt a dot-notation for all record-like structures used in this work.
For example, if M is a Kripke structure, then M.W denotes the set of all points in M .
Similarly, if S = (M,!), is a Kripke world, then S.M is the Kripke structure associated
with S, and S.W is the set of points in the Kripke structure associated with S.

Example 2.11 (Kripke World in the Concealed Coin Domain). Recall the Concealed Coin

Domain from Example 2.8. A Kripke world describing this domain is given in Figure 2.2.
⋄

TheKripke world in Figure 2.2 has two points,!� and!� , whose associated interpretation
functions model two distinct possible worlds: one in which the coin is facing heads, and in
the other tails. The fact that the accessibility relations for the agents are symmetric, reflexive,
transitive, and relate !� to !� and vice versa, reflects the fact that the agents have no means
of distinguishing between the two. The double circle around !� however marks it as the
reference point.

Now that the notion of a Kripke world has been established, we can now present the
entailment relation between Kripke worlds and modal formulae as defined in [19].
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Definition 2.12 (Entailment Relation). Let (M,!�) be a Kripke world in a multi-agent
domain, , with the signature Σ = (, ,).

• (M,!�) ⊧ f where f ∈  if and only ifM.�(!�)(f ) = ⊤

• (M,!�) ⊧ ¬' if and only if (M,!�) ⊧̸ '

• (M,!�) ⊧ '1 ∧ '2 if and only if (M,!�) ⊧ '1 and (M,!�) ⊧ '2

• (M,!�) ⊧ '1 ∨ '2 if and only if (M,!�) ⊧ '1 or (M,!�) ⊧ '2

• (M,!�) ⊧ □�' if and only if (M,!�) ⊧ ' for all !� such that (!� , !�) ∈M.R�

Let 0
' be equivalent to ', and let k+1
 ' be equivalent to 
k
 '.
• (M,!�) ⊧ 
' if and only if (M,!�) ⊧ □�' for each � ∈ 


• (M,!�) ⊧ 
' if and only if (M,!�) ⊧ k
 ' for k = 1, 2, 3,…

⋄

Example 2.13 (Entailment in the Concealed Coin Domain). Consider the Kripke world
(M,!�) shown in Figure 2.2. Among the formulae entailed by (M,!�) are:

¬□Aℎ ∧ ¬□A¬ℎ

{A,B,C}l
{A,B,C}(¬□Aℎ ∧ ¬□A¬ℎ)

⋄

Having described the language used to represent the various properties of a multi-agent
domain, we now turn our attention towards an approach taken by the dynamic epistemic
logic community for describing actions and change within a dynamic multi-agent domain.
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2.2.2 Update Models

An agent’s actions may alter both the ontic and epistemic properties of a domain. Consider
the act of unlocking the strongbox in the context of Example 2.8. In addition to the physical
effect of changing the value of the fluent locked, such an action may change the beliefs of
the other agents in the domain depending on what they know about the occurrence itself.
For example, if agent B observes A unlocking the strongbox, we should conclude that B
knows the strongbox is unlocked. Similarly, if C is oblivious of the action occurrence, he
should continue to believe that the strongbox is locked.

Briefly stated, the approach presented in [4, 43] describes a transition system whose
nodes represent possible physical and epistemic configurations of the world, and whose
edges are labeled by action occurrences together with the levels of awareness that the agents
of the domain have with respect to them. This model led to the development of the notion
of an event/update model and instances, which may be thought of as akin to a Kripke
structures/worlds describing action occurrences. What follows is a brief overview of the
language of update models presented in [43].

We begin with the notion of a -substitution, which may be viewed as a particular class
of function which models the direct effects of an action occurrence.

Definition 2.14 (-substitution). -substitutions are functions of type →  that distributes
over all language constructs, and that map all but a finite number of basic propositions to
themselves. -substitutions can be represented as sets of bindings:

{p1 → '1,… , pn → 'n}

where all the pi are different fluents. � denotes the identity substitution, and SUB denotes
the set of all -substitutions. ⋄
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As was alluded to previously, an update instance, may be viewed as a Kripke world
representing a particular action occurrence.

Definition 2.15 (Update Instance). Let  be a multi-agent domain with the signature Σ =
(, ,), where = {�1,… , �n}. An update model over the language, Σ, is a tuple
of the form (E,R�1 ,… , R�n , pre, sub) where:

• E is a finite, non-empty set of events

• each R�i is a binary relation on E called an accessibility relation for agent �i

• pre ∶ E → Σ assigns a precondition to each event
• sub ∶ E → SUBΣ assigns a -substitution to each event representing its direct

effects

An update instance is a pair, (U, "), where U is an update model, and " is an event in U .
designated as the reference event. ⋄

As with Kripke worlds, we assume the existence of an impartial, external observer who
knows which event in an update model corresponds to the frame of reference from which
one can draw conclusions about what actually transpired (as opposed to what the various
agents understand to have transpired).

Example 2.16 (Update Instance in the Concealed Coin Domain). Recall the Concealed
Coin Domain from Example 2.8, and consider an occurrence of the action unlock, where A

is the actor, B is an observer, and C is oblivious of what has transpired. In other words,

“agent A unlocks the box with agent B watching him and without the knowledge of agent C .”

The corresponding update instance is show in Figure 2.3. ⋄
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pre ∶ l
sub ∶ l ↦ ¬l

�p

pre ∶ ⊤
sub ∶ �

�i

A,B

C

A,B, C

Figure 2.3: Update instance for an occurrence of the action unlock where A is the
actor, B is an observer, and C is oblivious of what has transpired.

The update instance presented in Example 2.16 consist of two events: the positive event,
"p, and the inertial event, "i. The positive event describes the actual event that transpired
as part of the action occurrence, namely the strongbox being unlocked. The event has a
precondition, pre("p) = locked, stating that this is only possible if the strongbox is locked.
The physical effect is represented by sub("p) = {locked → ¬locked}, which has the informal
reading of “unlocking the strongbox causes it to be unlocked”. The inertial event is used
to model the belief of oblivious agents that nothing has transpired. Consequently it has no
preconditions and is associated with the identity substitution. What the agents believe about
the action occurrence is represented by their accessibility relations. Note for example that
"p is not accessible from the perspective of agent C . This reflects the fact that agent C is
unaware that this event may have transpired. By that same token, "p is accessible from the
perspectives of agents A and B, as they are both fully aware of what has happened.

As was mentioned previously, the transition system envisioned in [4, 43] is one whose
nodes correspond to Kripke worlds and whose arcs are labeled by update instances repre-
senting individual action occurrences. The transitions themselves are defined through an
operator known as the update execution given in Definition 2.17.

Definition 2.17 (Update Execution). Given a Kripke world, (M,!), and an update instance
(U, "), such that (M,!) ⊧ U.pre("), the successor world obtained by performing the ac-
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tion occurrence represented by (U, "), in (M,!), is the Kripke world (M,!)⊗ (U, ") =

(M ′, (!, ")) where:

• M ′.W = {(!� , "�) ∣ !� ∈M.W , "� ∈ U.E, (M,!�) ⊧ U.pre("�)}

• M ′.Ri = {((!� , "�), (!� , "�)) ∣ (!� , !�) ∈M.Ri and ("�, "�) ∈ U.Ri}

• M ′.�((!, "))(f ) = U.sub(")(f )

⋄

Example 2.18 (Applying the Update Execution in the Concealed Coin Domain). Suppose
that we are given the initial state of the Concealed Domain as in Example 2.11 defined by

the Kripke world in Figure 2.2, and that unbeknownst to C , agents A and B unlock the box

together. This action occurrence is described by the update instance given by Figure 2.3.

Application of the update execution yields the successor Kripke world shown in Figure 2.4.

⋄

(!� , �p)
ℎ,¬l

(!� , �p)
¬ℎ,¬l

(!� , �i)
ℎ, l

(!� , �i)
¬ℎ, l

A, B A,B

A,B, C A,B, C

A,B

C

C

C

C

A,B, C

Figure 2.4: The successor Kripke world after an occurrence of the action unlock
with A performing the action, B acting as an observer, and C oblivious of what has
transpired.
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2.3 Answer Set Programming

Answer set programming is a relatively new programming paradigm based on logic
programming under the answer set semantics [6, 21, 24, 25, 31]. The paradigm has been
successfully used in a broad range of applications ranging from modeling the reaction control
system of the space shuttle [3, 42], to textual query answering [8], and high level planning
and robotics [45]. What follows is a brief overview of the syntax and semantics of A-Prolog
taken in part from [24] (with the authors’ permission).

2.3.1 Syntax

Our discussion of the syntax and semantics of A-Prolog is done in the context of a given
signature4 Σ = ⟨, , ,⟩, where the elements of ,  , and  , are respectively referred to
as object, function and predicate constants, and the elements of  are referred to as variables.
For simplicity we assume that unless otherwise stated, the signatures of programs consist
only of those symbols used in their rules. With the notion of a signature in place, we may
introduce the notion of a term.

Definition 2.19 (A-Prolog Term). Terms over a signature, Σ, are defined as follows:

• Variables and object constants are terms.

• If t1,… , tn are terms, and f is a function symbol of arity n, then f (t1,… , tn) is a term.

Terms which contain no symbols for arithmetic expressions and no variables are known as
ground terms. ⋄

4The reader should make note of the fact that the signature of an A-Prolog program is different in kind
from that of a multi-agent domain.
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Statements are built up from terms. An atomic statement, or simply an atom, is an
expression of the form p(t1,… , tn), where p is a predicate symbol of arity n and t1,… , tn

are terms. A literal is an either an atom, p(t1,… , tn) or its negation, ¬p(t1,… , tn). Ground
atoms and their negations are referred to as ground literals. With these elementary constructs
in place, we can proceed to define rules, and from there an A-Prolog program.

Definition 2.20 (A-Prolog Program). An A-Prolog program, Π, consists of a signature, Σ,
and a collection of rules of the form:

�0 or… or �i ← �i+1,… , �m, not �m+1,… , not �n.

where each �i is a literal. ⋄

The left-hand side of a rule is called its head and the right-hand side is called its body.
Literals, possibly preceded by default negation, not, are often called extended literals. The
body of the rule can be viewed as a set of extended literals (sometimes referred to as the
premises of the rule).

The head or the body of a rule may be empty. A rule with an empty head is often referred
to as a constraint and is written as:

← �i+1,… , �m, not �m+1,… , not �n.

A rule with an empty body is known as a fact and is written as:

�0 or… or �i.

The symbol not is a new logical connective called default negation, (or negation as

failure). The extended literal not � is often read as “it is not believed that � is true.” Note
that this does not imply that � is believed to be false. It is conceivable, in fact quite normal,
for a rational reasoner to believe neither the statement p nor its negation ¬p. Clearly default
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negation, not is different from the classical ¬. Whereas ¬p asserts that p is false, not p is a
statement about belief.

Likewise, the disjunction or is also a new connective, sometimes referred to as epistemic
disjunction. The statement �1 or �2 is read as “�1 is believed to be true or �2 is believed

to be true.” It is also different from its classical counterpart ∨. The statement p ∨ ¬p of
propositional logic is a tautology; however the statement p or not p is not. The former states
that the proposition p is either true or false, whereas the latter states that p is believed to be
true or believed to be false. Once again, it is quite possible for a rational reasoner to have no
beliefs regarding the truth or falsity of propositions.

Following the Prolog convention, non-numeric object, function, and predicate constants
of Σ are denoted by identifiers beginning with lowercase letters; variables are identifiers
beginning with capital letters. The variables of a program Π range over ground terms of Σ.
A rule r with variables is viewed as a shorthand for the set of its ground instances – rules
obtained from r by replacing its variables by ground terms of Σ and by evaluating arithmetic
terms. The set of ground instances of the rules of a program Π is a called the grounding
of Π; a program Π with variables can be viewed simply as a shorthand for its grounding.
Lastly, a program Π which contains no default negations is known as a basic program.

With the syntax thus described, we now proceed with defining the semantics of an
A-Prolog program.

2.3.2 Semantics

Before we proceed with defining the semantics of an A-Prolog program, we need to
define what it means for a set of literals to satisfy a rule. We first define the notion for the
parts that make up the rule, and then show the parts combine to define the satisfiability of
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the rule.

Definition 2.21 (Satisfiability). A set S of ground literals satisfies:

• a literal, �, if � ∈ S;

• an extended literal not �, if � ∉ S;

• �0 or… or �n, if for some 1 ≤ i ≤ n, �i ∈ S;

• a set X of ground extended literals, if S satisfies every element X;

• a rule r, if whenever S satisfies r’s body, it satisfies r’s head.

⋄

Informally, a programΠ can be viewed as the specification for answer sets – sets of beliefs
that could be held by a rational reasoner associated with Π. Answer sets are represented
by collections of ground literals. In forming such sets, the reasoner must be guided by the
following informal principles:

1. Satisfy the rules of Π. In other words, believe in the head of a rule if you believe in its
body.

2. Do not believe in contradictions.

3. Adhere to the “Rationality Principle” that says, “Believe nothing which you are not
forced to believe.”

These informal principles lead us to the following definition of an answer set, which is
split into two parts: the first part defining the answer sets of a basic program; and the second
defining the answer sets of an arbitrary logic program.
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Definition 2.22 (Answer Set of a Basic Program). Let Π be a basic program. An answer set
of Π is a consistent set S of ground literals such that:

• S satisfies the rules of Π, and

• S is minimal (i.e., there is no proper subset of S that satisfies the rules of Π).

⋄

Definition 2.23 (Answer Set of a Logic Program). Let Π be an arbitrary logic program and
S be a set of ground literals. By ΠS (known as the reduct of Π with respect to S) we denote
the program obtained from Π by:

1. removing from Π all rules containing not � such that � ∈ S;

2. removing all other premises containing not

S is an answer set of Π if S is an answer set of ΠS . ⋄

The reader will note that at this point the syntax and semantics of A-Prolog have been
presented on a mathematical level. From a programmatic perspective, both of these are
realized and extended from their basic form by various answer-set solvers, and subsequent
examples are presented in the dialect of the answer-set solver clingo [21].
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Chapter 3

THE ACTION LANGUAGE m+
The preliminary ideas that were first presented in [7] were fleshed out and formalized

in the action language m+ in [11], a multi-agent variant of the action language  [27].
The motivating goals behind the development of m+ were to formalize a subset of the
English language to allow for the intuitive and elaboration tolerant [38] representation of
multi-agent domains such as the Classical Muddy Children Problem [19] and the Concealed
Coin Domains of [4]. A characteristic feature of such domains is there are no dependencies
between fluents. As such, actions do not have indirect effects which may alter the ontic
properties of the domain— instead, any indirect effects solely involve the domain’s epistemic
properties.

As a motivating example we consider the variant of the Concealed Coin Domain of [4]
described in Example 3.1.

Example 3.1 (The Concealed Coin Domain). Three agents, A, B, and C , are together in a

room with a box which contains a coin. Suppose that this fact, together with the fact that

none of the agents knows which face of the coin is showing is a commonly held belief among

them. Furthermore let us suppose that all of the agents are attentive and that this too is a

commonly held belief. Lastly, let us assume that the coin is facing heads up and that all of

the beliefs of the agents are true.

An agent may peek inside to determine which face of the coin is showing. In addition,

agent may signal or distract one of his fellows, thereby causing him to be respectively attentive

or inattentive. Attentive agents are fully aware of what transpires around them. ⋄
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3.1 Syntax

Theories of m+ are defined over a multi-agent domain  with a signature Σ. m+
supports two broad classes of actions: ontic (or world-altering) and epistemic actions. The
former describe actions which affect the properties of the domain represented by fluents,
while the latter describe actions which primarily affect the agents’ beliefs. Epistemic actions
are further broken into two categories: sensing and communication. Sensing actions represent
actions which an agent may perform in order to learn the value of a fluent, while commu-
nication actions are used to represent actions which communicate information between
agents.

Before we introduce the syntax of the language itself, it is useful to introduce two special
classes of modal formulae: fluent formulae and belief formulae. The former are used to
described the physical properties of a domain, while the latter are used to describe the beliefs
of the agents regarding those properties and the beliefs of their fellow agents regarding them.

Definition 3.2 (Fluent Formula). Let  be a multi-agent domain with the signature, Σ =
(, ,). A fluent formula is a formula built from the propositional variables in  and
the traditional propositional operators ∧, ∨,→, ¬, etc. ⋄

Throughout this work we use the term, fluent atom to mean a fluent formula containing
a single element f ∈  , and the term fluent literal to mean either a fluent atom, f , or its
negation ¬f . As usual, ⊤ and ⊥ denote true and false, respectively.

Definition 3.3 (Belief Formula). A belief formula is defined as follows:

• if ' is a fluent formula, then ' is a belief formula

• if � ∈  and ' is a belief formula, then �' is a belief formula
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• if'1 and'2 are belief formulae, then '1∧'2, '1∨'2, and'1 → '2 are belief formula

• if 
 ⊆  and ' is a belief formula, then 
' and 
' are belief formulae

• nothing else is a belief formula

⋄

Domains such as the one presented in Example 3.1 describes several distinct kinds of
information: ontic and epistemic properties which are initially true, and causal relationships
between actions and their effects. Each of these distinct kinds is represented by a corre-
sponding syntactic construct: initial state axioms, dynamic causal laws, as well sensing and
announcement axioms. Initial state axioms are statements of the form:

initially ' (3.1)

where ' is a belief formula, and have the informal reading of: “' is initially true.”
The causal relationship between an ontic action and its direct effects are represented by

dynamic causal laws which are statements of the form:

a causes � if � (3.2)

where a is an action, � is a fluent literal, and � is a belief formula. Laws of this form are
read as: “performing the action a in a state which satisfies � causes � to be true.” If � is a
tautology (� = ⊤), then we simply write the following:

a causes � (3.3)

The direct effects of epistemic actions are described by sensing and announcement/com-

munication axioms. Sensing axioms are statements of the form:

a determines f (3.4)
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where a is the name of an action, and f is a fluent. Statements of this form are under-
stood to mean: “if an agent performs the action a, he will learn the value of the fluent f .”
Communication axioms have a similar syntax:

a announces ' (3.5)

where a is the name of an action, and ' is a modal formula. In m+ only truthful announce-
ments are allowed.

The actions that an agent may perform in any given situation are often limited by various
properties of the domain. To represent this kind of information m+ includes a construct
known as an executability condition which is a statement of the form:

executable a if ' (3.6)

where a is the name of an action, and ' is a belief formula. Statements of this form are read
as follows: “action a is executable in a state which satisfies '.” If ' = ⊤, the statement is
omitted.

Thus far, statements (3.2) – (3.5) describe the causal relationships between actions and
their direct effects. Within a multi-agent context however, an action occurrence may indirectly
effect the beliefs of the agents in the domain depending on the kind of knowledge the agents
have regarding it. In general, for any given action occurrence we divide the agents of the
domain into three groups known as frames of reference (or levels of awareness):

• those which have first-hand knowledge of the action occurrence

• those which have second-hand knowledge of the action occurrence

• those which have no knowledge of the action occurrence

Agents which have first-hand knowledge of an action occurrence are known as full observers
(or fully aware agents). Such agents have full knowledge of both the action occurrence
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and its effects. Agents which have second-hand knowledge are known as partial observers
(or partially aware agents). Agents are said to have second-hand knowledge of an action
occurrence if they observe an action occurrence from a distance. Such agents know that
the action took place and who the participants were, but do not know its full consequences.
Lastly, agents which have no knowledge of an action occurrence are called oblivious agents.

The frames of reference of the agents are dynamic in nature, and depend on the properties
of the state in which the action occurs. In this work, we consider the possible frames of
reference of the agents for different kinds of actions to be as shown in Table 3.1.

action type full observers partial observers oblivious
ontic ✓ ✓

sensing ✓ ✓ ✓

announcements ✓ ✓ ✓

Table 3.1: Action classes and frames of reference in m+.

With respect to ontic actions, the agents may either have first-hand knowledge of an
action occurrence or be oblivious. For sensing and announcement actions however, an agent
may have any of the allowable frames of reference. For example, consider the act of peeking
into the box as described in the Concealed Coin Domain of [4]. The agents who peek into the
box are said to have first-hand knowledge of that specific action occurrence. Consequently,
they will all learn the contents of the box and this fact will be a common belief among them.
Agents who are not peeking into the box but merely observe their fellows perform such an
action are said to have second-hand knowledge of the action occurrence. These agents do
not learn the contents of the box. However, it does become a common belief among them
that those agents who peeked know the box’s contents. Lastly, all other agents in the domain
would be considered to be oblivious of that action occurrence.

Frames of reference are described by perspective axioms (or observability axioms) which
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are statements of the form:

X observes a if � (3.7)
X aware of a if � (3.8)

whereX is a set of agent names, a is an action, and � is a fluent formula. Perspective axioms
of the first form (called observation axioms) define the set of agents who are fully aware
of both the action occurrence and its effects. Those of the second form (called awareness
axioms) define the set of agents who are aware of the occurrence, but only partially of its
effects. By default, we assume that all other agents within the domain are oblivious. As with
dynamic causal laws, if � is a tautology, we adopt the following shorthand:

X observes a (3.9)
X aware of a (3.10)

Definition 3.4 (Initial State Description). An initial state description is a set of statements
of the form (3.1). ⋄

Definition 3.5 (Action Description of m+). An action description, Δ, in m+ is a col-
lection of statements of the form (3.2) – (3.10). Δ is consistent if for every pair of dynamic
causal laws [a causes f if �1] and [a causes ¬f if �2] in Δ, �1 ∧ �2 is inconsistent. ⋄

Example 3.6 (Representing the Concealed Coin Domain). We begin our axiomatization by

specifying the domain signature. A close reading of Example 3.1 suggests the following:

 = {A,B, C}
 = {heads, attentive(�)}

 = {peek(�), signal(�1, �2), distract(�1, �2)}

where �, �1, and �2, are variables over.
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With the signature firmly in place, we can now give the initial state description, and the

causal relationships between the actions and their effects. Example 3.1 states that initially:

• it is a common belief amongst the agents that the box contains a coin

• it is a common belief amongst the agents that none of them know which face of the

coin is showing

• it is a common belief amongst them that all of the agents are attentive

• all of the agents are in fact attentive

• the coin is actually facing heads up

• all of the beliefs of the agents are in fact true

This information is captured by the following initial state description

initially heads (3.11)
initially (¬Aheads ∧ ¬A¬heads) (3.12)
initially (¬Bheads ∧ ¬B¬heads) (3.13)
initially (¬Cheads ∧ ¬C¬heads) (3.14)
initially attentive(A) ∧ attentive(B) ∧ attentive(C) (3.15)
initially (attentive(A) ∧ attentive(B) ∧ attentive(C)) (3.16)

Having described the initial state, we move on to the actions and their effects. The action,

peek(�), is an epistemic action— in particular, it is a sensing action. Consequently its direct

effects are represented by the following sensing axiom:

peek(�) determines heads (3.17)
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Only the agent who is peeking is fully aware of the occurrence and its full effects. Attentive

agents are only partially aware of the action’s effects. This is represented by the following

pair of perspective axioms:

{�} observes peek(�) (3.18)
{�2} aware of peek(�1) if attentive(�2) (3.19)

The direct effects of the ontic actions signal(�1, �2) and distract(�1, �2) are represented

by the following dynamic causal laws:

signal(�1, �2) causes attentive(�2) (3.20)
distract(�1, �2) causes ¬attentive(�2) (3.21)

As they are ontic actions, the agents who are directly involved in an occurrence of such

an action, as well as any attentive agents are fully aware of the occurrence and its effects,

with all other agents being considered to be oblivious. This is represented by the following

perspective axioms:

{�1, �2} observes signal(�1, �2) (3.22)
{�} observes signal(�1, �2) if attentive(�) (3.23)
{�1, �2} observes distract(�1, �2) (3.24)
{�} observes distract(�1, �2) if attentive(�) (3.25)

⋄

3.2 Semantics

As is the case with other action languages, an action description of m+ defines a
transition diagram whose nodes correspond to states of the domain—which we model as
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Kripke worlds — and whose arcs are labeled by actions. We begin our discussion of the
semantics by taking a look at the meaning of initial state descriptions.

3.2.1 Deriving the Initial State

As a consequence of the Kripke semantics of modal formulae, there are potentially
infinitely many Kripke worlds which may be models of the modal theory described by an
initial state description. This presents a problem if we wish to be able to automate reasoning
about the initial state of the domain, and also increases the complexity that a system designer
must grapple with. In order to enable the use of modern computational technologies (e.g.,
answer set solvers, and certain kinds of planning systems), we introduce the notions of
restricted formulae and definite initial state descriptions.

Definition 3.7 (Restricted Formula). Let  be a multi-agent domain with signature, Σ =
(, ,). A restricted formula is defined as follows:

1. if ' is a fluent formula, then ' is a restricted formula

2. if � ∈  and ' is a fluent formula, then �', �' ∨ �¬', and ¬�' ∧ ¬�¬' is
a restricted formula

3. if � ∈  and ' is a restricted formula of the form (1) or (2), then ' is a restricted
formula

4. no other formula is a restricted formula

⋄
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Definition 3.8 (Definite Initial State Description). Let  be an initial state description, and
let:

 = {' ∣ [initially '] ∈ } ∪
{' ∣ [initially '] ∈  ∧ ' is a fluent formula}

 is said to be definite if:

•  is a set of restricted formulae

•  ̸⊧ �'1 holds for every fluent formula '1 such that there exists no '2 satisfying
(�'2) ∈  and ⊤ ⊧ '2 → '1

•  ̸⊧ (�'1 ∨ �¬'1) holds for every fluent formula '1 such that there exists no '2
satisfying (�'2 ∨ �¬'2) ∈  and ⊤ ⊧ '2 → '1

In addition,  is said to be complete if for each fluent f ∈  either [initially f ] ∈  or
[initially ¬f ] ∈ . Lastly,  is said to be consistent if  is consistent. ⋄

By restricting ourselves to definite initial state descriptions, we can limit the kinds of
Kripke worlds that are models of the corresponding modal theories to those which satisfy
the S5 axioms. In fact, it can be shown that all initial states of a complete and consistent
definite initial state description which satisfy the S5 axioms are equivalent to each other
[13], allowing us to make use of the notion of a canonical initial state.

Theorem 3.1. Let  be a multi-agent domain with the signature, Σ = (, ,),  be a

consistent and definite initial state description, and Δ be an action description of m+.
There exists a unique Kripke world, (M,�), where |M.W | ≤ 2| |, which satisfies the S5

axioms, such that every Kripke model of (,Δ) is equivalent to (M,�).
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Example 3.9 (The Concealed Coin Domain — Initial State). The initial state description
presented in Example 3.6 is a complete and consistent definite initial state description and

corresponds to the canonical initial state, �0 = (M0, !1) shown in Figure 3.1. �0 consists of

two points, !1 and !2, where:

• M0.�(!1) = {heads, attentive(A), attentive(B), attentive(C)}

• M0.�(!2) = {¬heads, attentive(A), attentive(B), attentive(C)}

M0.�(!1)

!1

M0.�(!2)

!2

A,B, C A,B, C
A,B, C

Figure 3.1: The initial state, �0, of the Concealed Coin Domain.

⋄

3.2.2 The Transition Function

Before we define the transition function of m+, we must introduce some useful nota-
tion/terminology, namely, what it means for an action to be executable in a given state, and
the frames of reference the agents have with respect to an action occurrence in a state.

Definition 3.10 (Executable Action). Let Δ be a consistent action description of m+,
� = (M,!) be a state in the transition diagram defined by Δ, and a be an action for which
there exists an executability condition [executable a if �] ∈ Δ. The action a is executable
in (M,!) if (M,!) ⊧ �. ⋄
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Now that we have defined the notion of executability, we may proceed with defining the
frames of reference of the agents.

Definition 3.11 (Frames of Reference). Let Δ be a consistent action description of m+,
� = (M,!) be a state in the transition diagram defined by Δ, and a be an action which
occurs in �. The various frames of reference of the agents are defined as follows:

• the set of agents who have first hand knowledge (or are fully aware) of a, denoted by
f (a, �) is {� ∈  ∣ [� observes a if �] ∈ Δ ∧ (M,!) ⊧ �}

• the set of agents who have second hand knowledge (or are partially aware) of a,
denoted by p(a, �) is {� ∈  ∣ [� aware of a if �] ∈ Δ ∧ (M,!) ⊧ �}

• the set of agents who have no knowledge (or are oblivious) of a, denoted by o(a, �) is
 ⧵ (f (a, �) ∪ p(a, �))

⋄

Note, that in m+, we make the following assumptions about the agents’ frames of
reference: members of f (a, �) know who their fellows are and the members of both p(a, �)
and o(a, �); members of p(a, �) know who their fellows are as well as the members of o(a, �);
and lastly, members of o(a, �) know who their fellow agents are.

The semantics ofm+ is defined by a transition function which is based on the following
intuition: for each action a which is executable in a state � = (M,!), we construct the
corresponding update instance U (�, a), and then apply the update execution operator from
[43] to obtain the successor state. Before we define the transition function itself, we first
define how we construct the appropriate update instances. In the following definitions, we
assume that: Δ is a consistent action description of m+; � = (M,!) is a state of the
transition diagram defined by Δ; a is an action governed by the executability condition
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[executable a if �] ∈ Δ, and a is executable in �. Graphical representations of the update
instances are presented in Figures 3.2 – 3.4.

pre ∶ ⊤
sub ∶ �

�i

pre ∶ f ∧ �
sub ∶ �

�p

pre ∶ ¬f ∧ �
sub ∶ �

�n


f (a, �), p(a, �) f (a, �), p(a, �)

p(a, �)

o(a, �) o(a, �)

Figure 3.2: General update in-
stance for sensing actions inm+.

pre ∶ ⊤
sub ∶ �

�i

pre ∶ ' ∧ �
sub ∶ �

�p

pre ∶ ¬' ∧ �
sub ∶ �

�n


f (a, �), p(a, �) f (a, �), p(a, �)

p(a, �)

o(a, �) o(a, �)

Figure 3.3: General update in-
stance for announcement actions
in m+.

pre ∶ �
sub ∶ E+

a ∪ E−
a

�p

pre ∶ ⊤
sub ∶ �

�i

f (a, �)

o(a, �)



Figure 3.4: General update in-
stance for ontic actions in m+.

Definition 3.12 (The Sensing Model Us(�, a)). Let a be a sensing action governed by the
sensing axiom [a determines f ]which is executable in �. The update instance corresponding
to an occurrence of a in �, Us(�, a) = (U,Γ), where:

• U.E = {"p, "n, "i}

• U.R� = {("p, "p), ("n, "n), ("i, "i)} for each � ∈ f (a, �)

• U.R� = {("p, "p), ("n, "n), ("i, "i), ("p, "n), ("n, "p)} for each � ∈ p(a, �)

• U.R� = {("p, "i), ("n, "i), ("i, "i)} for each � ∈ o(a, �)
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• U.pre("p) = f ∧ �

• U.pre("n) = ¬f ∧ �

• U.pre("i) = ⊤

• U.sub("p) = U.sub("n) = U.sub("i) = �

and Γ = {"p, "n}. ⋄

Definition 3.13 (The Announcement Model Ua(�, a)). Let a be an announcement described
by the axiom [a announces '] which is executable in �. The update instance corresponding
to an occurrence of a in �, Ua(�, a) = (U,Γ), where:

• U.E = {"p, "n, "i}

• U.R� = {("p, "p), ("n, "n), ("i, "i)} for each � ∈ f (a, �)

• U.R� = {("p, "p), ("n, "n), ("i, "i), ("p, "n), ("n, "p)} for each � ∈ p(a, �)

• U.R� = {("p, "i), ("n, "i), ("i, "i)} for each � ∈ o(a, �)

• U.pre("p) = ' ∧ �

• U.pre("n) = ¬' ∧ �

• U.pre("i) = ⊤

• U.sub("p) = U.sub("n) = U.sub("i) = �

and Γ = {"p}. ⋄

Definition 3.14 (The Ontic Model Uo(�, a)). Let a be an ontic action described by the
dynamic causal law [a causes f if �] which is executable in �. The update instance corre-
sponding to an occurrence of a in �, Uo(�, a) = (U,Γ), where:
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• U.E = {"p, "i}

• U.R� = {("p, "p), ("i, "i)} for each � ∈ f (a, �)

• U.R� = {("p, "i), ("i, "i)} for each � ∈ o(a, �)

• U.pre("p) = �

• U.pre("i) = ⊤

• U.sub("p) = E+
a ∪ E

−
a where:

– E+
a = {f → � ∨ f ∣ [a causes f if �] ∈ Δ}

– E−
a = {f → ¬� ∧ f ∣ [a causes ¬f if �] ∈ Δ}

• U.sub("i) = �

and Γ = {"p}. ⋄

Now that we have defined the means by which we obtain the appropriate update instances,
we may proceed with defining the transition function.

Definition 3.15 (The Transition Function). Let Δ be an action description of m+, � =
(M,!) be a state of the transition diagram defined by Δ, and a be an action. The successor
state(s) obtained by performing the action a in the state � are defined as follows:

ΦΔ(�, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� ⊗ Uo(�, a) ontic action
� ⊗ Us(�, a) sensing action
� ⊗ Ua(�, a) otherwise

⋄
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It can be shown that the semantics has a number of desirable properties, among which
are the following:

Theorem 3.2. Let Δ be a consistent action description of m+, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a sensing action that is executable in �. Let

(M ′, !′) ∈ � ⊗ Us(�, a). It holds that:

• ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ f (a,�)� iff (M,!) ⊧ � where � ∈

{f,¬f}

• ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f )
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

Intuitively, Theorem 3.2 states that agents who have first hand knowledge of the action
occurrence will all know/believe the truth values of the sensed fluent. Those agents who
have indirect knowledge of the action occurrence will know/believe that those agents who
were involved in the action occurrence have learned the value of the sensed fluent. Lastly,
the beliefs of oblivious agents carry over from one state to the next due to inertia.

Theorem 3.3. LetΔ be a consistent action description ofm+, � = (M,!) be a state in the

transition diagram defined byΔ, and a be an announcement action that is executable in � that

is governed by the announcement axiom [a announces '] ∈ Δ. Let (M ′, !′) ∈ �⊗Ua(�, a).

It holds that:

• (M ′, !′) ⊧ f (a,�)'
• (M ′, !′) ⊧ p(a,�)(f (a,�)' ∨ f (a,�)¬')
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��
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Theorem 3.3 states that agents who have first hand knowledge of the action occurrence
will all know/believe the truth values of the announced formula. Those agents who have
indirect knowledge of the action occurrence will know/believe that those agents who were
involved in the action occurrence have learned the value of the respective formula. Lastly,
the beliefs of oblivious agents carry over from one state to the next due to inertia.

Theorem 3.4. Let Δ be a consistent action description of m+, � = (M,!) be a state in

the transition diagram defined by Δ, and a be an ontic action that is executable in �. Let

(M ′, !′) ∈ � ⊗ Us(�, a). It holds that:

• ∀� ∈ f (a, �), dynamic causal law [a causes � if �] ∈ Δ, and !1, !2 ∈M.W :

– ("p, !1) ⊧ � if (M,!1) ⊧ �

– (!1, !2) ∈M.R� iff (("p, !1), ("p, !2)) ∈M ′.R�

• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

Theorem 3.4 keeps the same pattern, stating that those agents which have first hand knowl-
edge of the action occurrence know/believe in all of its effects, while the knowledge/beliefs
of oblivious agents remain unchanged.

3.3 Representing Dynamic Domains with m+

Having defined the syntax and semantics of m+ in the previous section, we now shift
our focus to presenting the a couple of in-depth examples of its application in modeling
the Classical Muddy Children Problem [19] and a new multi-agent domain known as the
Escapee Domain [15].
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3.3.1 The Classical Muddy Children Domain

To recap Example 1.1, the Classical Muddy Children Problem goes as follows: N
children are playing together outside and during their play, some of them get mud on their
foreheads. Each child can see the mud on the foreheads of their siblings, but cannot tell
whether or not they themselves are muddy. This fact is common knowledge among them.
Their father comes along and announces that at least one of them is muddy. He then repeatedly
asks “do you know whether or not you are muddy” until all of the children reply in the
affirmative. Assuming that all of the children are intelligent, honest, and answer in unison,
it can be shown that if K children are muddy, then after the K tℎ time the father asks his
question, the children will all reply “yes”. As stated previously, here we concern ourselves
with an instance of this problem whereN = K = 3.

The solution presented in [19] takes the form of a dialogue where the initial state of
the domain is presented as a given, as is the trajectory that unfolds as a consequence of a
sequence of public announcements. In this section we present a complete formalization of
the domain in the language of m+ and show how the semantics of the language enables us
to obtain the precise trajectory presented in [19] and Example 1.1.

Example 3.16 (Representing the Classical Muddy Children Problem). We begin our rep-

resentation by defining the domain signature. A close reading of the domain suggests the

following:

 = {A,B, C}
 = {muddy(�)}

 = {declare, respond}

where � is a variable over . In this axiomatization, the three children are named A,
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B, and C; fluents of the form muddy(�) are read as “� is muddy”; the action, declare,

represents the father’s initial announcement that at least one child is muddy; and finally the

action, respond, represents the children’s responses of “no” to their father’s questions.

With the signature firmly in place, we can now present the initial state axioms. Turning

once again to the domain description we know that the following are common knowledge/-

beliefs among the children:

• Each child can see the mud on the foreheads of their siblings.

• Each child cannot tell whether or not they themselves are muddy.

The former can be represented by the following collection of initial state axioms:

initially (Amuddy(B) ∨A¬muddy(B)) (3.26)
initially (Amuddy(C) ∨A¬muddy(C)) (3.27)
initially (Bmuddy(A) ∨B¬muddy(A)) (3.28)
initially (Bmuddy(C) ∨B¬muddy(C)) (3.29)
initially (Cmuddy(A) ∨C¬muddy(A)) (3.30)
initially (Cmuddy(B) ∨C¬muddy(B)) (3.31)

while the latter is captured by the following:

initially ¬Amuddy(A) (3.32)
initially ¬A¬muddy(A) (3.33)
initially ¬Bmuddy(B) (3.34)
initially ¬B¬muddy(B) (3.35)
initially ¬Bmuddy(C) (3.36)
initially ¬B¬muddy(C) (3.37)

46



If we label each point of the minimal model for axioms (3.26) through (3.37) by the

agents who are muddy (as a shorthand for the positive and negative forms of the fluents

muddy�), we obtain the initial state shown in Figure 3.5.
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AC C

A
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B
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B B

C

A

B

A

C

Figure 3.5: Minimal model of the initial state axioms for the Muddy Children Problem.

As described by the domain signature, there are two actions in this particular representa-

tion: declare, and respond. Each of these however are specific instances of a kind of action

known as a public announcement. Public announcements are a kind of communication

action which are in essence observed (or participated in) jointly by all of the agents operating

within the domain. As we shall see, these can be represented in a rather straightforward

manner in m+.
The action declare corresponds a public announcement of the fact that “at least one

of the children is muddy.” The action itself is represented by the following announcement
axiom:

declare announces muddy(A) ∨ muddy(B) ∨ muddy(C) (3.38)
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while its public nature is modeled by the general observability axiom:

{A,B, C} observes declare (3.39)

In the context of this domain, axiom (3.39) can be read as: “every agent of the domain is
fully aware of any occurrence of the action declare.” It is worth noting that this axiom states

that the observability of the action is independent of the state in which it occurs, and hence

the semantics of the occurrence is given by the update instance shown in Figure 3.6, with

' = muddy(A) ∨ muddy(B) ∨ muddy(C).

p ∶ '
s ∶ �

�p

A,B, C

Figure 3.6: Update instance for the father’s declaration in the Muddy Children Prob-
lem.

At this point it is worth noting that application of the transition function defines the

following trajectory for the father’s announcement in the initial state (in keeping with our

intuition from Chapter 1.1.1):

As was the case with the action declare, the action respond is also a public announcement,

this time made by the children. Here, the formula being announced corresponds to the

statement that “none of the children know whether or not they are muddy.” As with declare,

the action may be modeled by the following axioms:

respond announces ¬�muddy(�) ∧ ¬�¬muddy(�) (3.40)
{A,B, C} observes respond (3.41)
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Figure 3.7: Trajectory defined by the father’s declaration in the Muddy Children
Problem.

The reader will note the use of the variable � in axioms (3.40) and (3.41) is merely a

convenient shorthand notation. A careful application of the transition function shows that

the axiomatization presented here yields the same trajectory as the canonical solution

presented in Chapter 1.1.1 and [19]. ⋄

A careful study of axioms (3.26) through (3.41) brings out two of the virtues of the action
language approach generally, and of m+ more specifically. Firstly, the textual nature of
the action description makes it unnecessary for a system designer to manually specify all of
the possible update instances for every potential occurrence of an action. It is sufficient to
write general axioms which govern an an action as an action category, and leave it to the
semantics to define the instances for specific action occurrences. Secondly, the separation of
the observability of an occurrence from the definition of an action allows us to represent
action categories more generally, and allowing the public or private nature of an action
occurrence to now be dependent on the state in which it occurs. This second virtue will be
more readily apparent in our discussion of the Escapee Domain in the next section.
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3.3.2 The Escapee Domain

The Escapee Domain, which was first presented in [15], is an important multi-agent
domain as it illustrates the importance of being able to model actions which alter the ob-

servability of subsequent actions performed by the agents in the domain. In addition, it
shows how certain actions can be modeled through sequences of more primitive, elementary

actions. The domain goes as follows: Suppose that agent A is held captive by a hostile agent
B. In order to escape, A must open his cell without B’s knowledge. Fortunately, agent C
is a double agent in B’s organization and may release A from his cell. C does not want to
break his cover however, so he may release A only if B is not watching. Once A has been
released, he must work together with C to subdue agent B, and then make his escape. A
will only work with C if he believes that C is an ally.

Example 3.17 (Representing the Escapee Domain). As before, we begin our representation

by presenting the domain signature, as well as the initial state description. A close reading

of the problem description suggests the following signature:

 = {A,B, C}
 = {free(�), bound(�), captor(�1, �2), attentive(�), allies(�1, �2), united(�1, �2)}

 = {escape(�), release(�1, �2), subdue(�1, �2, �3), unite(�1, �2),

signal(�1, �2), distract(�1, �2), tell(�1, �2, ')}

where �, and �i are variables over, and ' is a formula of the form allies(�1, �2).

Unlike the Classical Muddy Children Problem, it is useful to identify two broader cate-

gories of fluents: ontic fluents and perspective fluents. Ontic fluents are used to describe
actual physical properties of the domain, while perspective fluents (while fluents), are ad-

ditionally used to define the observability of action occurrences as a function of the state
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in which they transpire. In this particular domain, fluents of the form attentive(�) are per-
spective fluents. In addition, fluents of the form united(�1, �2) are also a kind of perspective

fluent which is used in modeling collaborative actions. These fluents may be manipulated

directly by the agents via the perspective altering actions signal/distract and unite/disband,

respectively.

With the signature firmly in place, we can now present the initial state axioms. Initially,

it is common knowledge that each child knows the status of his fellows. This is represented

fairly readily by the following axioms:

initially {A,B,C}(attentive(�)) ∧ bound(A) (3.42)
initially {A,B,C}(¬Aallies(A,C) ∧ ¬Ballies(B,C)) (3.43)
initially Callies(A,C) (3.44)

Axiom (3.42) states that initially it is a commonly held belief amongst all of the agents that

A is bound, and that all of them are attentive to their surroundings. Axiom (3.43) states that
is also a commonly held belief that neither agents A nor B believe that C is allied with agent

A. Finally, axiom (3.44) states that agent C does believe himself to be a double agent allied

with A.

Unlike our previous example, the Escapee Domain has a large number of elementary

actions. Another avenue of departure is that the domain presents an opportunity to explore

how sequences of elementary actions allow for the modeling of collaborative, and also

private actions on the part of the agents. In the interest of clarity, we will divide the actions

into two categories: perspective altering and general actions. We begin our representation

by focusing on the perspective altering actions signal/distract and unite/disband.

The actions signal and distract in a straightforward manner as before, with their ob-

servability limited to those agents directly involved in the action occurrences, and attentive
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agents:

signal(�1, �2) causes attentive(�2) (3.45)
distract(�1, �2) causes ¬attentive(�2) (3.46)
{�1, �2} observes signal(�1, �2) (3.47)
{�} observes signal(�1, �2) if attentive(�) (3.48)
{�1, �2} observes distract(�1, �2) (3.49)
{�} observes distract(�1, �2) if attentive(�) (3.50)

In general, agents may unite in order to act together. In the context of the Escapee

Domain, an agent must be ¬bound before he may unite with another agent to collaboratively

perform some action. In addition, an agent will only unite with someone whom he believes

is an ally. Once they are done collaborating, they may disband. This behavior is defined by

the following axioms:

unite(�1, �2) causes united(�1, �2) (3.51)
executable unite(�1, �2) if ¬bound(�1) ∧ ¬bound(�2) ∧ �1allies(�1, �2) (3.52)
disband(�1, �2) causes ¬united(�1, �2) (3.53)

The observation axioms governing the frames of reference of the agents with respect to

occurrences of the actions unite and disband follow the same pattern as those for the actions

signal and distract:

{�1, �2} observes unite(�1, �2) (3.54)
{�} observes unite(�1, �2) if attentive(�) (3.55)
{�1, �2} observes disband(�1, �2) (3.56)
{�} observes disband(�1, �2) if attentive(�) (3.57)
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Now that we have finished defining the behaviors of the perspective altering actions,

we turn our attention to the remaining actions. A single agent may release another agent

causing him to no longer be bound. A pair of agents working together may subdue an agent,

causing him to be bound.

release(�1, �2) causes ¬bound(�2) (3.58)
subdue(�1, �2, �3) causes bound(�3) (3.59)
executable subdue(�1, �2, �3) if united(�1, �2) ∨ united(�2, �1) (3.60)

The observation axioms for the actions release and subdue also follow directly from our

intuition:

{�1, �2} observes release(�1, �2) (3.61)
{�} observes release(�1, �2) if attentive(�) (3.62)
{�1, �2, �3} observes subdue(�1, �2, �3) (3.63)

The representation of the action escape is fairly straightforward as well. Once an agent

has escaped, he is free. From the domain description, we know that an agent (in this case A),

may only escape once his captor has been subdued (i.e. bound). The relevant observation

axioms follow a now familiar pattern.

escape(�) causes free(�) (3.64)
executable escape(�1) if captor(�2, �1) ∧ bound(�2)∧ (3.65)

(¬united(�1, �3) ∨ ¬united(�3, �1)) (3.66)
{�} observes escape(�) (3.67)
{�2} observes escape(�1) if attentive(�2) (3.68)
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Lastly, an agent may tell another agent some fact about the domain. The action tell is a

communication action, and is represented by the corresponding axiom:

tell(�1, �2, ') communicates ' (3.69)

where ' is of the form allies(�1, �2). Agents may eavesdrop however, and therefore in the

Escapee Domain, communication must be done with caution. For this domain, we assume

that attentive agents are fully aware of what is said between their fellows. This assumption

is encoded by the following observation axioms:

{�1, �2} observes tell(�1, �2, ') (3.70)
{�3} observes tell(�1, �2, ') if attentive(�3) (3.71)

⋄

A careful study of Example 3.17 shows that private actions (both ontic and involving
communication) can be defined and reasoned about in terms of sequences of elementary
actions. Example 3.18 emphasizes this important trait of m+, which distinguishes it from
the approach of [4, 43] which would require the definition of potentially complex update
models to model such actions. This high level view has a benefit from a knowledge represen-
tation standpoint in that it allows a system designer to focus on modeling an orthogonal set
of primitive actions, and that the resulting action description is also transparent to a reader.
This also allows for the development of automated systems to solve the temporal projection
and planning problems which will be discussed in greater detail in Chapter 5.

Example 3.18 (Private Communication in the Escapee Domain). In order for agent A to

eventually escape, agent C must first inform A that they are allies. This communication

must be done privately however so that C may maintain his cover. In the language of

update models, this would be achieved by defining an update model for the following action:
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Agent C tells A that allies(A,C) is true with B oblivious of what has transpired. Using our

axiomatization however we can model this as the result of the following action sequence:

[distract(C,B), tell(C,A, allies(A,C))]

Axiom (3.46) states that the consequence of distract(C,B) will be to cause ¬attentive(B) to

be come true in the subsequent state of the domain. This in turn will cause the occurrence of

the action tell(C,A, allies(A,C)) to be done without the knowledge of agent B due to axioms

(3.70) and (3.71). ⋄
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Chapter 4

THE ACTION LANGUAGE m
The action language m+ described in Chapter 3 is a first step towards the development

of a multi-agent action language. The language’s structure closely mirrors that of the action
language and consequently, it inherits some of ’s deficiencies, mainly the lack of state
constraints (also known as static causal laws), the importance of which was illustrated by the
Lin’s Briefcase Domain in [32]. The action language  was developed partly in response
to this discovery [27], and adding such constructs is a natural evolution of the language
m+. As a motivating example, consider the multi-agent variant of the Lin’s Briefcase
Domain of [32] presented in Example 4.1.

Example 4.1 (A Multi-Agent Lin’s Briefcase Domain). Three agents, A, B, and C , are
together in a room with a locked briefcase which contains a coin. The briefcase is locked by

two independent latches, each of which may be flipped open (or closed) by an agent. Once

both latches are open, the briefcase is unlocked and an agent may peek inside to determine

which face of the coin is showing. In addition, agent may signal or distract one of his fellows,

thereby causing him to be respectively attentive or inattentive. Attentive agents are fully

aware of what transpires around them. Suppose that the briefcase is locked, and that this

fact, together with the fact that none of the agents knows which face of the coin is showing is

a commonly held belief among them. Furthermore let us suppose that all of the agents are

attentive and that this too is a commonly held belief. Finally, let us assume that the coin is

actually facing heads up. ⋄

The domain presented in Example 4.1 is an interesting elaboration of the Concealed
Coin Domain of [4] due to the dependency between the state of the lock and its governing
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latches. m+ lacks a mechanism for describing complex dependencies between fluents,
hence the addition of state constraints, giving us the multi-agent action language m.

4.1 Syntax

Theories of m are defined over a multi-agent domain  with a signature Σ. Like its
predecessor, m supports two broad classes of actions: ontic and epistemic actions, and
as with m+, epistemic actions are divided into sensing and communication actions. The
language also inherits the notion of initial state axioms and initial state descriptions from
m+, and hence we refer the reader to Chapter 3.1.

The direct effects of ontic actions are described by dynamic causal laws which are
statements of the form:

a causes � if � (4.1)

where a is an action, � is a fluent literal, and � is a conjunction of fluent literals. Laws of
this form are read as: “performing the action a in a state which satisfies � causes � to be
true.” If � is a tautology, then we simply write the following:

a causes � (4.2)

Sensing actions are described by sensing axioms which have the form:

a determines f (4.3)

where a is the name of an action, and f is a fluent. Statements of this form are under-
stood to mean: “if an agent performs the action a, he will learn the value of the fluent f .”
Communication actions are described by communication axioms which have the form:

a communicates ' (4.4)
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where a is the name of an action, and ' is a modal formula. In m only truthful announce-
ments are allowed.

The constructs (4.1) – (4.4) only describe the direct effects of their respective actions. In
general, an agent’s actions may indirectly affect the knowledge/beliefs of his fellows, as well
as the values of various fluents. As in m+, for any given action occurrence we divide the
agents of the domain into three groups known as frames of reference (or levels of awareness):

• those which have first-hand knowledge of the action occurrence

• those which have second-hand knowledge of the action occurrence

• those which have no knowledge of the action occurrence

Agents which have first-hand knowledge of an action occurrence are known as full observers
(or fully aware agents). Such agents have full knowledge of both the action occurrence
and its effects. Agents which have second-hand knowledge are known as partial observers
(or partially aware agents). Agents are said to have second-hand knowledge of an action
occurrence if they observe an action occurrence from a distance. Such agents know that
the action took place and who the participants were, but do not know its full consequences.
Lastly, agents which have no knowledge of an action occurrence are called oblivious agents.

The frames of reference of the agents are dynamic in nature, and depend on the properties
of the state in which the action occurs. In this work, we consider the possible frames of
reference of the agents for different kinds of actions to be as shown in Table 4.1.

action type full observers partial observers oblivious
ontic ✓ ✓

sensing ✓ ✓ ✓

announcements ✓ ✓ ✓

Table 4.1: Action classes and frames of reference in m.
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Frames of reference are described by perspective axioms which are statements of the
form:

X observes a if � (4.5)
X aware of a if � (4.6)

whereX is a set of agent names, a is an action, and � is a modal formula. Perspective axioms
of the first form (called observation axioms) define the set of agents who are fully aware
of both the action occurrence and its effects. Those of the second form (called awareness
axioms) define the set of agents who are aware of the occurrence, but only partially of its
effects. By default, we assume that all other agents within the domain are oblivious. As with
dynamic causal laws, if � is a tautology, we adopt the following shorthand:

X observes a (4.7)
X aware of a (4.8)

The inclusion of observation axioms allows us to make explicit the assumption that agents
are aware of the actions they perform. In m, the only assumptions made regarding the
frames of reference of the agents are that those who are fully aware of an action occurrence
and its effects, as well as those who are aware only of the occurrence, know the frames of
reference of all of the agents within the domain.

Unlike m+, m also allows us to represent indirect effects of the second form by
including state constraints which are statements of the form:

� if � (4.9)

where � is a fluent literal and � is a conjunction of fluent literals. Statements of this form
are read as: “if � is true in a state, then � must also be true in that state.”
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Lastly, executability conditions, which are statements of the form:

impossible a if � (4.10)

where a is an action and � is a modal formula, are used to describe when actions may not be
performed.

Definition 4.2 (Action Description of m). An action description, Δ, in m is a collec-
tion of statements of the form (4.1)–(4.10). ⋄

Example 4.3 (Representing the Multi-Agent Lin’s Briefcase Domain). As before, we begin
our axiomatization by specifying the domain signature. A close reading of Example 4.1

suggests the following:

� = {A,B, C}

 = {open(�), locked, heads, attentive(�)}

 = {flip(�, �), peek(�), signal(�1, �2), distract(�1, �2)}

and �, �1, and �2, are variables over, and � is a variable ranging over the set {l1, l2}.

With the signature now in place, we can now give the initial state description, and the

causal relationships between the actions and their effects. Example 4.1 states that initially:

• it is a common belief amongst the agents that the briefcase contains a coin

• it is a common belief amongst the agents that none of them know which face of the

coin is showing

• it is a common belief amongst them that all of the agents are attentive

• it is a common belief amongst them that the briefcase is locked (and hence each of the

two latches is closed)
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• all of the agents are in fact attentive

• the coin is actually facing heads up

• the briefcase is locked (and hence each of the two latches is closed)

• all of the beliefs of the agents are in fact true

This information may be represented by the following initial state description:

initially locked (4.11)
initially (locked) (4.12)
initially ¬open(l1) ∧ ¬open(l2) (4.13)
initially heads (4.14)
initially (¬Aheads ∧ ¬A¬heads) (4.15)
initially (¬Bheads ∧ ¬B¬heads) (4.16)
initially (¬Cheads ∧ ¬C¬heads) (4.17)
initially attentive(A) ∧ attentive(B) ∧ attentive(C) (4.18)
initially (attentive(A) ∧ attentive(B) ∧ attentive(C)) (4.19)

Now that we have described the initial state, we now shift our attention towards the

actions and their effects. The direct effects of the action flip(�, �) are represented via the

following pair of dynamic causal laws:

flip(�, �) causes open(�) if ¬open(�) (4.20)
flip(�, �) causes ¬open(�) if open(�) (4.21)

The following state constraint models the indirect effects of the action, flip(�, �), namely that

the briefcase is unlocked once both latches are open.

¬locked if open(l1) ∧ open(l2) (4.22)
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The agent directly performing the action flip(�, �), as well as any attentive agents are

considered to be fully aware of the action occurrence and of its full effects. This information

may be encoded by the following pair of perspective axioms:

{�} observes flip(�, �) (4.23)
{�2} observes flip(�1, �) if attentive(�2) (4.24)

The action, peek(�), is an epistemic action — in particular, it is a sensing action. Conse-

quently its direct effects are represented by the following sensing axiom:

peek(�) determines heads (4.25)
The fact that an agent may not peek into a locked briefcase is represented by the following

executability condition:

impossible peek(�) if locked (4.26)
Unlike the action flip(�, �), only the agent who is peeking is fully aware of the occurrence

and its full effects. Agents who are attentive, are only partially aware of the action’s effects.

This is modeled by the following perspective axioms:

{�} observes peek(�) (4.27)
{�2} aware of peek(�1) if attentive(�2) (4.28)

Lastly, the actions signal(�1, �2) and distract(�1, �2) are described in a similar fashion:

signal(�1, �2) causes attentive(�2) (4.29)
{�1, �2} observes signal(�1, �2) (4.30)
{�} observes signal(�1, �2) if attentive(�) (4.31)
distract(�1, �2) causes ¬attentive(�2) (4.32)
{�1, �2} observes distract(�1, �2) (4.33)
{�} observes distract(�1, �2) if attentive(�) (4.34)
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⋄

4.2 Semantics

As is the case with other action languages, an action description of m defines a
transition diagram whose nodes correspond to states of the domain—which we model as
Kripke worlds — and whose arcs are labeled by actions. Within a particular state, the points
comprising the underlying Kripke world correspond to complete consistent sets of fluent
literals closed under the state constraints of the action description.

4.2.1 Deriving the Initial State

As was mentioned previously, m inherits the notions of initial state axiom, and initial
state description from its predecessor. Likewise, in m we make use of the notion of a
definite initial state description from Section 3.2.1 and their associated semantics.

Example 4.4 (Multi-Agent Lin’s Briefcase Domain— Initial State). The initial state descrip-
tion presented in Example 4.3 is a complete and consistent definite initial state description,

and corresponds to the canonical initial state, �0 = (M0, !1) shown in Figure 4.1. �0

consists of two points, !1 and !2, where:

• M0.�(!1) = {heads, attentive(A), attentive(B), attentive(C),¬open(l1),

¬open(l2), locked}

• M0.�(!2) = {¬heads, attentive(A), attentive(B), attentive(C),¬open(l1),

¬open(l2), locked}

⋄
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M0.�(!1)

!1

M0.�(!2)

!2

A,B, C A,B, C
A,B, C

Figure 4.1: The initial state, �0, of the Multi-Agent Lin’s Briefcase Domain.

4.2.2 The Transition Function

As was the case with m+, before we define the transition function of m, we must
define what it means for an action to be executable in a given state, and the frames of
reference the agents have with respect to an action occurrence in a state.

Definition 4.5 (Executable Action). Let Δ be a consistent action description of m,
� = (M,!), be a state in the transition diagram defined by Δ, and a be an action for which
there exists an impossibility condition [impossible a if �] ∈ Δ. The action a is executable
in (M,!) if (M,!) ⊧̸ �. ⋄

Now that we have defined the notion of executability, we proceed with defining the
frames of reference of the agents.

Definition 4.6 (Frames of Reference). Let Δ be a consistent action description of m,
� = (M,!) be a state in the transition diagram defined by Δ, and a be an action which
occurs in �. The various frames of reference of the agents are defined as follows:

• the set of agents who have first hand knowledge (or are fully aware) of a, denoted by
f (a, �) is {� ∈  ∣ [� observes a if �] ∈ Δ ∧ (M,!) ⊧ �}

• the set of agents who have second hand knowledge (or are partially aware) of a,
denoted by p(a, �) is {� ∈  ∣ [� aware of a if �] ∈ Δ ∧ (M,!) ⊧ �}
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• the set of agents who have no knowledge (or are oblivious) of a, denoted by o(a, �) is
 ⧵ (f (a, �) ∪ p(a, �))

⋄

As was the case in m+, in m we make the following assumptions about the agents’
frames of reference: members of f (a, �) know who their fellows are and the members of both
p(a, �) and o(a, �); members of p(a, �) know who their fellows are as well as the members
of o(a, �); and lastly, members of o(a, �) know who their fellow agents are.

The semantics of m is defined in terms of a transition function. The inclusion of state
constraints however make the approach used in defining the semantics of m+ unsuitable.
The approach taken with m is a hybrid approach making use of the McCain-Turner
equation [34] used in defining the semantics of together with the event models of [4].
The key intuition behind our semantics is that reasoning about the effects of an action is a
two step process:

1. The agent first reasons about how his fellows may perceive his action — this is done
by constructing the event model representing the action occurrence and using what
we call an epistemic update to obtain a pointed frame describing the general structure
of the successor state.

2. The agent then reasons about how his actions may actually play out in the domain
— this is done by expanding the points of the pointed frame obtained in step (1) by
using the McCain-Turner equation to obtain the resulting Kripke world describing the
successor state.

Before we continue describing the semantics of m, we define the notions of frame/-
pointed frame, and event model/pointed event model.
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Definition 4.7 (Pointed Frame). Let  be a multi-agent domain with signature, Σ =

(, ,), where = {�1,… , �n}. A frame, F , is a tuple of the form (W ,R�1 ,… , R�n)

where:

• W is a nonempty set of points

• each R�i is a binary relation onW called an accessibility relation for agent �i

A pointed frame is a pair, (F ,!), whereM is a frame, and ! is a point in F . ⋄

Definition 4.8 (Pointed Event Model). Let  be a multi-agent domain with the signature
Σ = (, ,), where  = {�1,… , �n}. An event model over a language, Σ,  , is a
tuple of the form (E,R�1 ,… , R�n , pre) where:

• E is a finite, non-empty set of events

• each R�i is a binary relation on E called an accessibility relation for agent �i

• pre ∶ E → Σ assigns a precondition to each event
A pointed event model is a pair, ( , "), where  is an event model, and " is an event of  . ⋄

4.2.2.1 The Epistemic Update

When reasoning about the effects of an action, an agent first establishes what a pointed
frame describing the general configuration of the successor state. This is done by con-
structing a pointed event model describing how the agents of the domain perceive the action
occurrence. In the context ofm, we define three particular pointed event models, for ontic,
sensing, and communication actions respectively: o(�, a), s(�, a), and c(�, a). Graphical
representations of the update instances are presented in Figures 4.2 to 4.4.
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o(a, �) o(a, �)

Figure 4.2: General update in-
stance for sensing actions inm.
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f (a, �), p(a, �) f (a, �), p(a, �)

p(a, �)

o(a, �) o(a, �)

Figure 4.3: General update in-
stance for communication actions
in m.

pre ∶ ¬(
⋁
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�p

pre ∶ ⊤

�i

f (a, �)

o(a, �)



Figure 4.4: General update in-
stance for ontic actions in m.

The intuition behind o(�, a) is relatively straightforward: the agents are either aware
of the action occurrence or are oblivious. In addition, we make the assumption that those
agents who are aware of the action occurrences know which agents are oblivious.

Definition 4.9 (The Ontic Model o(�, a)). The function o(�, a) yields the set of pointed
event models represented by the pair ( ,Γ) where  is defined as follows:

•  .E = {"p, "i}

•  .R� = {("p, "p), ("i, "i)} for each agent in f (�, a)

•  .R� = {("p, "i), ("i, "i)} for each agent in o(�, a)

Let Ψ = {� ∣ [impossible a if �] ∈ Δ}.

•  .pre("p) = ¬(⋁Ψ)

•  .pre("i) = ⊤
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and Γ = {"p}. ⋄

s(�, a) is based on the following intuition: the real value of f is revealed to those agents
who are performing the action, causing it to become a commonly held belief among them;
agents who observe the action learn that the value of f has been revealed to those agents
who were directly involved in it; and the beliefs of oblivious agents remain unchanged.

Definition 4.10 (The Sensing Model s(�, a)). The function s(�, a) yields the set of pointed
event models represented by the pair ( ,Γ) where  is defined as follows:

•  .E = {"p, "n, "i}

•  .R� = {("p, "p), ("n, "n), ("i, "i)} for each agent in f (�, a)

•  .R� = {("p, "p), ("n, "n), ("i, "i), ("p, "n), ("n, "p)} for each agent in p(�, a)

•  .R� = {("p, "i), ("n, "i), ("i, "i)} for each agent in o(�, a)

Let f be the fluent determined by the sensing axiom for the action a, and let Ψ = {� ∣

[impossible a if �] ∈ Δ}.

•  .pre("p) = f ∧ ¬(⋁Ψ)

•  .pre("n) = ¬f ∧ ¬(⋁Ψ)

•  .pre("i) = ⊤
and Γ = {"p, "n}. ⋄

The intuition behind c(�, a) is similar to that of sensing actions: ' becomes a commonly
held belief among those agents who receive/hear the message; agents who observe the action
learn that the value of ' has been revealed to those agents who heard it (they are however
unaware of the truth of '); and lastly, the beliefs of oblivious agents are unchanged.
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Definition 4.11 (The Communication Model c(�, a)). The function c(�, a) yields the set
of pointed event models by the pair ( ,Γ) where  is defined as follows:

•  .E = {"p, "n, "i}

•  .R� = {("p, "p), ("n, "n), ("i, "i)} for each agent in f (�, a)

•  .R� = {("p, "p), ("n, "n), ("i, "i), ("p, "n), ("n, "p)} for each agent in p(�, a)

•  .R� = {("p, "i), ("n, "i), ("i, "i)} for each agent in o(�, a)

Let ' be the formula specified by the communication axiom for the action a, and let Ψ =
{� ∣ [impossible a if �] ∈ Δ}.

•  .pre("p) = ' ∧ ¬(⋁Ψ)

•  .pre("n) = ¬' ∧ ¬(⋁Ψ)

•  .pre("i) = ⊤
and Γ = {"p}. ⋄

In order to obtain the pointed frame describing the successor state, we apply an operation
that we call the epistemic update, which when applied to a state and a pointed event model,
yields a pointed frame capturing the general structure of the successor state.

Definition 4.12 (Epistemic Update). Given a state, � = (M,!), and an pointed event model
 = ( , "), such that � ⊧  .pre("), Eu(�, ) defines the pointed frame (F , (!, ")) where:

• F .W = {(!j , "j) ∣ !j ∈M.W , "j ∈  .E, (M,!j) ⊧  .pre("j)}
• F .R� = {((!j , "j), (!k, "k)) ∣ (!j , !k) ∈M.R�, ("j , "k) ∈  .R�}

⋄
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Example 4.13 (Applying the Epistemic Update). Recall the initial state of the Multi-Agent

Lin’s Briefcase Domain shown in Figure 4.1. Suppose that A distracts C . The action,

distract(A,C), is an ontic action which directly affects the fluent attentive(C) as specified

by the dynamic causal law (4.32):

distract(�1, �2) causes ¬attentive(�2)

The perspective axioms (4.33) and (4.34):

{�1, �2} observes distract(�1, �2)

{�} observes distract(�1, �2) if attentive(�)

together with the fact that the agents are initially attentive, give f (�0, distract(A,C)) =

{A,B, C} and o(�0, distract(A,C)) = ∅ as the agents’ frames of reference. The pointed

frame describing the successor state resulting from the occurrence of the action distract(A,C)

is given by Eu(�0, o(�, distract(A,C)))), and is shown in Figure 4.5. ⋄

(!1, "p) (!2, "p)A,B, C A,B, C
A,B, C

Figure 4.5: Pointed frame resulting from applying the epistemic update.

4.2.2.2 The Ontic Update

The epistemic update only describes how an agent reasons about how his actions are
perceived by his fellows. In order to obtain the full successor state, he must then reason
about how his actions may actually play out. This is accomplished by abstracting away the
presence of other agents, turning the problem into one concerning the effects of an action in a
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single-agent domain. This is done by applying what we term an ontic update operation to the
pointed frame. Prior to defining the ontic update, we must first describe how to relate pointed
frame to the framework for reasoning about the effects of an action from the perspective of
.
Definition 4.14 ( State). Let Δ be an action description of m and � be a state of the
transition diagram defined by Δ. Each point, ! of � corresponds to a complete, consistent
set of fluent literals,(�, !), defined as follows:

{f ∣ �.�(!)(f ) = ⊤} ∪ {¬f ∣ �.�(!)(f ) = ⊥}

⋄

Intuitively, a pointed frame describes the basic structure of the successor state. Let (!, ")
be a point in a pointed frame obtained by the application of the epistemic update. Such a
point is interpreted in a similar fashion to to an atom of the form do(", !) in the situation
calculus1 [39] (i.e., " occurs in the possible world represented by the point !). Using the
originating state, � and the pointed frame, we obtain the corresponding expansions of the
point ! by applying the McCain-Turner equation [34] to the possible worlds defined by
(�, !).
Definition 4.15 (Scenario Expansion). Let � = (M,!) be a state of the transition diagram
defined by Δ;  = ( , ") be a pointed event model corresponding to the occurrence of an
action, a, in �;  = Eu(�, ) be the pointed frame describing the structure of the successor
state; and w = (!, ") be a point in  . The expansion of the point w consistent with �,
(denoted by C(�,w)), is defined as follows:

• if " = "i, then C(�,w) = {(�, !)}
1With some admitted abuse of notation.
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• C(�,w) = {�(w) ∣ �(w) = CnΔ(E((�, !), a) ∪ ((�, !) ∩ �(w)))} otherwise
⋄

It should be of no surprise that Equation (4.15) is the McCain-Turner equation, which
we first saw in Section 2.1.2. As before, the arguments to CnΔ combine the direct effects
of the action, E((�, !), a), with those properties of the domain which carry over due
to inertia, ((�, !) ∩ �(w)). The consequence operator, CnΔ, extrapolates the indirect
effects of the action in accordance with the state constraints of Δ.

Having defined the basic framework, we may now define the ontic update operation.

Definition 4.16 (Ontic Update). Let Δ be an action description of m, � be a state of
the transition diagram defined by Δ, and  = (F ,!) be the pointed frame describing the
structure of the successor state. The ontic update, OuΔ(�,) defines a set of Kripke worlds
(M ′,Γ) where:

• M ′.W is the set of new points of the form !�i(w) for each �i(w) ∈ C(�,)
• M ′.�(!�i(w))(f ) = ⊤ if f ∈ �i(w)

• M ′.�(!�i(w))(f ) = ⊥ if ¬f ∈ �i(w)

• M ′.R� = {(!�i(w1), !�j (w2)) ∣ !�i(w1), !�j (w2) ∈M
′.W , and (w1, w2) ∈  .R�}

• Γ = {!�i(w) ∣ �i(w) ∈ C(�, !)}

⋄

Example 4.17 (Applying the Ontic Update). Let 0 denote the pointed frame from Exam-

ple 4.13. Application of the ontic update,OuΔ(�0,0), gives the set of Kripke world depicted
in Figure 4.6. The pointed Kripke structure,M1, shown in Figure 4.6 consists of two points,

!3 = !�1(!1, "p), and !4 = !�1(!2, "p), where:
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!�1 (!1, "p) !�1 (!2, "p)A,B, C A,B, C
A,B, C

Figure 4.6: Successor state obtained by applying the ontic update.

• M1.�(!3) = {heads, locked,¬open(l1),¬open(l2), attentive(A),

attentive(B),¬attentive(C)}

• M1.�(!4) = {¬heads, locked,¬open(l1),¬open(l2), attentive(A),

attentive(B),¬attentive(C)}

⋄

4.2.2.3 The Full Transition Function

As was mentioned previously, the transition function is based on the following intuition:
an agent first reasons about how his action is perceived, and then reasons about how it
may actually play out. This intuition is realized in the definition of our transition function,
ΦΔ(�, a).

Definition 4.18 (The Transition Function). Let Δ be an action description of m, � be
a state of the transition diagram defined by Δ, and a be an action. The successor state(s)
obtained by performing the action a in the state � are defined as follows:

ΦΔ(�, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

OuΔ(�,Eu(�, o(�, a))) ontic action
OuΔ(�,Eu(�, s(�, a))) sensing action
OuΔ(�,Eu(�, c(�, a))) otherwise
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⋄

As with m+, it can be shown that the semantics has a number of desirable properties,
among which are the following:

Theorem 4.1. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be an ontic action that is executable in �. Let

(M ′, !′) ∈ ΦΔ(�, a). It holds that:

• ∀� ∈ f (a, �), and dynamic causal law [a causes � if �] ∈ Δ, if (M,!) ⊧ ��, then

(M ′, !′) ⊧ ��

• ∀� ∈ f (a, �), and state constraint [� if �] ∈ Δ, (M,!) ⊧ �(� ⇐⇒ �)

• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

Theorem 4.1 in essence states that the direct effects of an ontic action are a commonly
held belief among those agents who have first hand knowledge of the action occurrence. In
addition, it tells us that every state of the transition diagram satisfies the state constraints of
the program. Lastly, it states that the beliefs of oblivious agents are unchanged from one
state to the next.

Theorem 4.2. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a sensing action that is executable in � and

described by the sensing axiom [a determines f ] ∈ Δ. Let (M ′, !′) ∈ ΦΔ(�, a). It holds

that:

• (M ′, !′) ⊧ f (a,�)� if and only if (M,!) ⊧ � where � ∈ {f,¬f}

• (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f )
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

74



Theorem 4.2 informs us that the value of the fluent f is revealed to all of the agents who
are participants in the occurrence of the sensing action related to f . Furthermore, it states
that those agents who merely observe the action occurrence learn that the value of the fluent
has been revealed. Lastly, it too states that the beliefs of oblivious remain unchanged due to
inertia.

Theorem 4.3. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a communication action that is executable in

� and described by the sensing axiom [a communicates '] ∈ Δ. Let (M ′, !′) ∈ ΦΔ(�, a).

It holds that:

• (M ′, !′) ⊧ f (a,�)'
• (M ′, !′) ⊧ p(a,�)(f (a,�)' ∨ f (a,�)¬')
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

Finally, Theorem 4.3 captures the same intuition as Theorem 4.2, except that it now
applies to the modal formula being announced, as opposed to the value of a single fluent.

4.3 Representing Dynamic Domains with m

Having defined the syntax and semantics ofm in the context of a multi-agent variation
of the Lin’s Briefcase Domain [12, 32], we now shift our focus to presenting an in-depth
example of its application to modeling a multi-agent variation of the Burner Ignition Domain
of [24].
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4.3.1 The Burner Ignition Domain

Two students, A and B, are in a chemistry class and must use a gas powered burner
in their experiment. The burner is connected to a gas tank by a pipeline. The tank is on
the left-most end of the pipeline, while the burner is on the right-most end. The pipeline
is comprised of three sections connected together by valves as shown in Figure 4.7. Each
section can be pressurized by the tank or depressurized. Opening a valve causes the section
to its right to be pressurized if the section on its left is as well. Moreover, for safety reasons, a
valve can only be opened if the next valve in the pipeline is closed. Closing a valve causes the
pipe section on its right to become depressurized. The burner may be ignited (and therefore
lit and usable) if the entire pipeline is pressurized. Furthermore, A and B have different
personalities, and while A is studious and attentive, B is easily distracted. For safety reasons,
A and B decide to not touch the valves unless both of them are paying attention, and may
signal each other to ensure that they’re on task.

tank v1 v2 burner
s1 s2 s3

Figure 4.7: Pipeline configuration in the Burner Ignition Domain.

Example 4.19 (Representing the Burner Ignition Domain). We begin our representation as

before by presenting the domain signature, as well as the initial state description. A close

reading of the problem description suggests the following:

 = {A,B}
 = {lit, open(�), attentive(�), pressurized(�)}

 = {signal(�1, �2), open(�, �), close(�, �), ignite(�)}
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where � is a variable over ; � is a variable over {v1, v2} representing the individual

valves; and � is a variable over {s1, s2} representing the sections of the pipeline. Atoms of

the form attentive(�) have the same reading as before, while the fluents which are specific to

this domain have capture the following intuitions:

• lit - denotes whether or not the burner is lit.

• open(�) - denotes whether or not a particular valve is in the open position.

• pressurized(�) - denotes whether or not a particular section of the pipeline has been

pressurized.

In addition to the object constants representing the valves and sections of the pipeline, we

also introduce a number of auxiliary relations to help define the structure of the pipeline. It

should be noted that these relations do not represent fluents (as the structure of the pipeline
is static in this domain). For this example, we represent the pipeline configuration from

Figure 4.7 with the following set of facts:

{connected(t, s1), connected(s1, v1, s2), connected(s2, v2, s3), connected(s3, b)}

where t and b denote the tank and burner respectively.

With the signature firmly in place, we can now present the initial state axioms. Let us sup-

pose that the initial state of the domain is by the following commonly held beliefs/knowledge
between A and B:

• Both students are behaving in accordance with their personalities initially (i.e. A is

paying attention, while B is not).

• The burner is initially off.

• None of the pipeline sections are pressurized.
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• All of the valves are closed.

and are represented by the following initial state axioms:

initially Aattentive(A) (4.35)
initially A¬attentive(B) (4.36)
initially ¬lit (4.37)
initially ¬pressurized(s1) (4.38)
initially ¬pressurized(s2) (4.39)
initially ¬pressurized(s3) (4.40)
initially ¬open(v1) (4.41)
initially ¬open(v2) (4.42)

For simplicity of the presentation a number of additional axioms are omitted, such as

those detailing the actual structure of the pipeline, just as we omitted the specification of the

auxiliary relations and object constants from the domain signature.

Taking a look at the domain signature we can see the following actions: signal(�1, �2),

open(�, �), close(�, �), and ignite. All of these are ontic actions, but what distinguishes them
in character from the kinds of ontic actions presented in Chapter 3 is that most of them have

indirect effects that are not limited to the epistemic properties of the domain. We begin our

presentation with the axioms defining the behavior of the action signal:

signal(�1, �2) causes attentive(�2) (4.43)
{�1, �2} observes signal(�1, �2) (4.44)
{�} observes signal(�1, �2) if attentive(�) (4.45)

As was the case with the other multi-agent domains presented in this text, the action signal is

of interest due to its ability to alter the perspectives of the agents for any subsequent actions.
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The actions open and close are a symmetric pair of actions which enable an agent

to manipulate valves along the pipeline. The direct effects of the action open are fairly

straightforward: opening a valve causes it to become open. Similarly, for the action close.

open(�, �) causes open(�) (4.46)
� observes open(�, �) (4.47)
�2 observes open(�1, �) if attentive(�2) (4.48)
close(�, �) causes ¬open(�) (4.49)
� observes close(�, �) (4.50)
�2 observes close(�1, �) if attentive(�2) (4.51)

In addition to the standard epistemic indirect effects, opening a valve may also indirectly

cause the relevant adjacent sections to become pressurized. We also take as a given that the

section of the pipeline directly connected to the tank is always pressurized:

pressurized(�) if connected(t, �) (4.52)
pressurized(�2) if open(�) ∧ connected(�1, �, �2) ∧ pressurized(�1) (4.53)

Lastly, with regards to open and close, one cannot open a valve that’s already been opened,

and one cannot close a valve if it has already been closed. Furthermore, for safety reasons,

a valve may only be opened if the next valve in the sequence is closed.

impossible open(�, �) if open(�) (4.54)
impossible close(�, �) if ¬open(�) (4.55)
impossible open(�, �1) if connected(�1, �1, �2) ∧ connected(�2, �2, �3) ∧ open(�2) (4.56)

Furthermore, the safety protocol that A and B have agreed upon says that the valves are

not to be touch if either one of them is not paying attention. This is encoded by the following
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executability conditions:

impossible open(�, �) if ¬attentive(�) (4.57)
impossible open(�1, �) if ¬attentive(�2) (4.58)
impossible close(�, �) if ¬attentive(�) (4.59)
impossible close(�1, �) if ¬attentive(�2) (4.60)

The final action to define is ignite. For safety reasons, the burner may only be ignited if

the section of pipeline connected to the burner is pressurized.

ignite(�) causes lit (4.61)
impossible ignite(�) if ¬pressurized(�) ∧ connected(�, b) (4.62)
¬lit if ¬pressurized(�) ∧ connected(�, b) (4.63)

As before, we also have the executability conditions corresponding to the safety protocol:

impossible ignite(�) if ¬attentive(�) (4.64)
impossible ignite(�1) if ¬attentive(�2) (4.65)

⋄

Example 4.20 (Burner Ignition Domain — Lighting the Burner). Suppose that the initial
state of the domain is the one given by axioms (4.35) through (4.42). How might A and

B work together to light the burner while following the necessary precautions? A careful

reading of axioms (4.43) through (4.65) suggests the following sequence of actions:

signal(A,B), open(A, v1), open(B, v2), ignite(A)

The first action, makes it possible for both agents to follow the protocol by making B now

focus on his task. Once both agents are attentive, the valves may be opened in sequence,

and the burner may be ignited. ⋄
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Chapter 5

MULTI-AGENT REASONING VIA ASP

In this chapter we explore how answer set programming [21, 24] may be applied to
automate various reasoning tasks within a multi-agent context. We begin exploring a
representation of the Classical Muddy Children Problem, followed by a discussion of the
answer-set prolog representation of the semantics of m+. We then conclude by presenting
solutions to the temporal projection and planning problems in the context of m+.

5.1 The Classical Muddy Children Problem in ASP

In this section we take an in depth look at the use of answer set programming [21, 24] to
represent an instance of the Classical Muddy Children Problem from [19]. This work was
originally presented in less detail in [10]. For a detailed presentation of the domain itself we
refer the reader to either Chapters 1.1.1 and 3.3.1, or [19].

5.1.1 Representing the Domain Signature

The definition of the domain’s signature deviates slightly from that presented in Exam-
ple 3.16:

 = {A,B, C}
 = {mA, mB, mC}

 = {declare(')}
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% A, B, and C are agents.

agent(a). agent(b). agent(c).

% if AG is an agent then m(AG) is a fluent corresponding to mAG
fluent(m(AG)) :- agent(AG).

% declare(mA ∨ mB ∨ mC) is an action

action(declare(or(m(a),m(b),m(c)))).

% if AG is an agent then declare(AG(mAG)) is an action

action(declare(neg(k(AG,m(AG))))) :- agent(AG).

% if AG is an agent then declare(¬AG(¬mAG)) is an action

action(declare(neg(k(AG,neg(m(AG)))))) :- agent(AG).

% ⊤ and ⊥ are defined as primitive values

value(top). value(bot).

Listing 5.1: ASP representation of the domain signature for the Muddy Children
Domain.

where a fluent of the form m� is read as “agent � is muddy”, and ' is a modal formula1. This
is represented by the collection of rules in Listing 5.1.

5.1.2 Representing Modal Formulae

The solution to the Classical Muddy Children Problems involves the use of modal logic.
Definition 2.9 is recursive however, and not all of the possible formulae that can be defined
over the signature specified in Section 5.1.1 are relevant, so we define only a subset of them
in our representation. In particular, we need to define the formulae necessary to capture the
public announcements made by both the father and the children, as well as those needed to
formulate what is initially commonly known by the children. This is accomplished through

1The modal formulae allowed are limited to those pertaining to the domain directly.
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the definitions of the relations literal/1 and formula/1.
We begin by defining the notion of a fluent literal, which is a fluent or its negation. The

fluents themselves are defined as part of the domain signature, however, the notion of a
fluent literal is a syntactic construct that we use to construct modal formulae, so we treat
them separately in our program. Literals are defined by the predicate literal/1, and atoms
of the form literal(F) are read as: “F is a literal.” With the notion of a fluent literal firmly
in place, we proceed to define the modal formulae of interest in this domain. Formulae are
defined by the predicate formula/1, and atoms of the form formula(F) are read as: “F is
a formula.” For our purposes, if F is fluent literal, then F is a formula, as is the disjunction
of three fluent literals. Listing 5.2 shows how the definitions of these fluent formulae are
realized in answer-set prolog.

If A is an agent and F is a fluent literal, then k(A,F) and neg(k(A,F)) are formulae
corresponding to modal formulae of the form AF and ¬AF . The disjunction of such
formulae is also considered to be a formula. In addition, we can apply the operator  to any
of the previously defined formulae and still have a modal formula. Listing 5.3 shows the
corresponding answer-set prolog definitions.

5.1.2.1 Representing States of the Domain

Recall that in our model of a dynamic multi-agent domain, states are understood as
Kripke worlds. As detailed in Definition 2.10, a Kripke world is a pair, (M,!) whereM is a
Kripke model and ! is a particular point inM describing the actual physical configuration of
the domain. Kripke worlds themselves are complex, record-like structures, and we represent
them as a collection of atoms for each field of the record:

• step/1 - Kripke worlds are named in accordance with their step/position along a
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% A literal is defined as a fluent F or its negation ¬F.
literal(F) :- fluent(F).

literal(neg(F)) :- fluent(F).

% The fluent literals F and ¬F are complementary.

complementary(F, neg(F)) :- fluent(F).

complementary(neg(F), F) :- fluent(F).

% If F is fluent literal then F is a formula.

formula(F) :- literal(F).

% The disjunction of three distinct, non-complementary fluent literals is a

% formula.

formula(or(F1,F2,F3)) :-

literal(F1), literal(F2), literal(F3),

F1 != F2, F2 != F3, F1 != F3,

not complementary(F1, F2),

not complementary(F2, F3),

not complementary(F1, F3).

Listing 5.2: ASP definition of fluent formulae in the Muddy Children Domain.

trajectory in the domain we are modeling. Steps are enumerated starting from 0, and
atoms of the form step(X) are read as: “X is a step/state of the domain.”

• point/2 - defines the set of points for a given Kripke world. Atoms of the form
point(P,T) are read as: “P is a point in the Kripke world defined for step T .”

• value_of/4 - defines the interpretation functions for a given Kripke world. Atoms of
the form value_of(F,V,P,T) are read as: “fluent F has the value V in the point P
of the Kripke world for step T .” Another way of reading atoms of this form using the
notation given in Chapter 2.2.1.2 is: T .�(P )(F ) = V .

• k_reachable/4 - defines the accessibility relations for the agents in a given Kripke
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% If A is an agent and F is a literal, then AF is a formula.

formula(k(A,F)) :- agent(A), literal(F).

% If A is an agent and F is a literal, then ¬AF is a formula.

formula(neg(k(A,F))) :- agent(A), literal(F).

% A1F1 ∨A2F2 is also a formula if the disjuncts are distinct.

formula(or(k(A1,F1),k(A2,F2))) :-

formula(k(A1,F1)), formula(k(A2,F2)),

k(A1,F1) < k(A2,F2).

% If AF is a formula then (AF ) is also a formula.

formula(c(k(A,F))) :- formula(k(A,F)).

% If ¬AF is a formula then (¬AF ) is also a formula.

formula(c(neg(k(A,F)))) :- formula(neg(k(A,F))).

% If ' is a defined disjunctive formula then ' is one as well.

formula(c(or(F1,F2,F3))) :- formula(or(F1,F2,F3)).

formula(c(or(k(A1,F1),k(A2,F2)))) :- formula(or(k(A1,F1),k(A2,F2))).

Listing 5.3: ASP definition of modal formulae in the Muddy Children Domain.

world. Atoms of the form k_reachable(P1,P2,A,T) are read as: “the pair (!1, !2)
belongs to the accessibility relation for agent A in the Kripke world defined at step T .”

• reference_point/2 - defines the reference point for a given Kripke world. Atoms
of the form reference_point(P,T) are read as: “point P is the reference point
associated with the Kripke world for step T .”

5.1.2.2 Representing the Entailment Relation

Now that we have a basic notation for bothmodal formulae and the Kripke worlds defining
the states of our domain, we can focus on representing the entailment relation between them
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% If F is a fluent then (T , P ) ⊧ F if and only if T .P (F ) = ⊤
entailed_by(F, P, T) :- value_of(F, top, P, T),

fluent(F), point(P, T).

% If F is a fluent then (T , P ) ⊧ ¬F if and only if T .P (F ) = ⊥
entailed_by(neg(F), P, T) :- value_of(F, bot, P, T),

fluent(F), point(P, T).

% (T , P ) ⊧ F1 ∨ F2 if and only if (T , P ) ⊧ F1 or (T , P ) ⊧ F2
entailed_by(or(F1,F2), P, T) :- entailed_by(F1, P, T),

formula(or(F1,F2)), point(P, T).

entailed_by(or(F1,F2), P, T) :- entailed_by(F2, P, T),

formula(or(F1,F2)), point(P, T).

% (T , P ) ⊧ F1 ∨ F2 ∨ F3 if and only if (T , P ) ⊧ F1 or (T , P ) ⊧ F2 or (T , P ) ⊧ F3
entailed_by(or(F1,F2,F3), P, T) :- entailed_by(F1, P, T),

formula(or(F1,F2,F3)), point(P, T).

entailed_by(or(F1,F2,F3), P, T) :- entailed_by(F2, P, T),

formula(or(F1,F2,F3)), point(P, T).

entailed_by(or(F1,F2,F3), P, T) :- entailed_by(F3, P, T),

formula(or(F1,F2,F3)), point(P, T).

Listing 5.4: ASP definition of the entailment relation for fluent formulae in the Muddy
Children Domain.

in answer-set prolog. This relation is described by atoms of the form entailed_by(F,P,T)

which are read as (T , P ) ⊧ F . As was the case in defining the syntax of modal formulae, it is
important to notice that the representation of the entailment relation follows Definition 2.12,
and is restricted to those formulae of interest in the domain of discourse. Listing 5.4 shows
the definition of the relation entailed_by/3 for fluent formulae.

Having represented the entailment relation for the fluent formulae of interest in this
particular domain, we turn our attention towards entailment relation for the modal formulae
involving the modal operators  and . It is important to note that here we deviate from
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Definition 2.12, and instead make use of the property of G-reachability outlined in [19].
Listing 5.5 gives continues the definition of the relation entailed_by/3 for such formulae.

5.1.3 Representing the Initial State

As has been mentioned in previously, we view a multi-agent domain as a transition
system whose nodes correspond to states of the domain (modeled as Kripke worlds) and
whose arcs are labeled by actions. The trajectory is comprised of several states (or steps),
which we simply enumerate from 0…3. This is done in a straightforward fashion by the set
of facts: step(0..3). These steps are then associated as names for the individual Kripke
worlds defining the states of our transition system.

The names of the points from which we construct the Kripke worlds at each step of the
trajectory are all taken from the same set, which is defined by the relation symbol/1. Facts
of the form symbol(X) are read as “X is a symbol.” The set of points in the initial state
of the Classical Muddy Children is comprised of all eight state symbols. The remaining
components of the initial state are defined explicitly (with the exception of the accessibility
relations) using the vocabulary established in the previous sections.

The accessibility relations of our Kripke worlds on the other hand are generated by a
choice rule, along with rules which describe the properties that the accessibility relations
must have in order to satisfy the S5 axioms (i.e., they must be symmetric, reflexive and
transitive). Listing 5.6 presents the bulk of the answer-set prolog representation of the initial
state, including the generation of candidate accessibility relations.

Up until this point, we have only specified some general properties of the initial Kripke
world. What’s left for us to specify is the formula that must be entailed by it in order for it to
correctly represent the initial state of this instance of Classical Muddy Children Problem:

87



% (T , P1) ⊧ AF if and only if (T , P2) ⊧ F for all P2 such that (P1, P2) ∈ T .RA
entailed_by(k(A,F), P, T) :- entailed_by_all_k_reachable(F, A, P, T),

formula(k(A,F)), point(P, T), agent(A).

% (T , P ) ⊧ ¬AF if and only if (T , P ) ⊧̸ AF
entailed_by(neg(k(A,F)), P, T) :- not entailed_by(k(A,F), P, T),

formula(neg(k(A,F))), point(P, T), agent(A).

entailed_by_all_k_reachable(F, A, P, T) :-

not -entailed_by_all_k_reachable(F, A, P, T),

formula(F), point(P, T), agent(A).

-entailed_by_all_k_reachable(F, A, P1, T) :-

k_reachable(P1, P2, A, T), not entailed_by(F, P2, T),

formula(F), point(P1, T), point(P2, T), agent(A).

% (T , P1) ⊧ F if and only if for all P2 such that P2 is g-reachable from

% P1, (T , P2) ⊧ F.
entailed_by(c(F), P, T) :- entailed_by_all_g_reachable(F, P, T),

formula(c(F)), point(P, T).

entailed_by_all_g_reachable(F, P, T) :-

not -entailed_by_all_g_reachable(F, P, T),

formula(F), point(P, T).

-entailed_by_all_g_reachable(F, P1, T) :-

g_reachable(P1, P2, T), not entailed_by(F, P2, T),

formula(F), point(P1, T), point(P2, T).

g_reachable(P1, P2, T) :- k_reachable(P1, P2, A, T),

point(P1, T), point(P2, T), agent(A).

g_reachable(P1, P2, T) :- g_reachable(P1, P3, T), g_reachable(P3, P2, T),

point(P1, T), point(P2, T), point(P3, T).

Listing 5.5: ASP definition of the entailment relation for modal formulae in the Muddy
Children Domain.
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symbol(w1). symbol(w2). symbol(w3). symbol(w4).

symbol(w5). symbol(w6). symbol(w7). symbol(w8).

point(P, 0) :- symbol(P).

reference_point(w1, 0).

value_of(m(a), top, w1, 0). value_of(m(b), top, w1, 0).

value_of(m(c), top, w1, 0). value_of(m(a), top, w2, 0).

value_of(m(b), top, w2, 0). value_of(m(c), bot, w2, 0).

value_of(m(a), top, w3, 0). value_of(m(b), bot, w3, 0).

value_of(m(c), top, w3, 0). value_of(m(a), top, w4, 0).

value_of(m(b), bot, w4, 0). value_of(m(c), bot, w4, 0).

value_of(m(a), bot, w5, 0). value_of(m(b), top, w5, 0).

value_of(m(c), top, w5, 0). value_of(m(a), bot, w6, 0).

value_of(m(b), top, w6, 0). value_of(m(c), bot, w6, 0).

value_of(m(a), bot, w7, 0). value_of(m(b), bot, w7, 0).

value_of(m(c), top, w7, 0). value_of(m(a), bot, w8, 0).

value_of(m(b), bot, w8, 0). value_of(m(c), bot, w8, 0).

{k_reachable(P1, P2, A, 0) : point(P1, 0), point(P2, 0)} :- agent(A).

k_reachable(P1, P2, A, 0) :- k_reachable(P2, P1, A, 0),

point(P1, 0), point(P2, 0), agent(A).

k_reachable(P1, P2, A, 0) :-

k_reachable(P1, P3, A, 0), k_reachable(P3, P2, A, 0),

point(P1, 0), point(P2, 0), point(P3, 0), agent(A).

k_reachable(P, P, A, 0) :- point(P, 0), agent(A).

Listing 5.6: ASP definition of the initial state in the Muddy Children Domain.
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namely that it is common knowledge amongst the children that none of them knows whether
or not they are muddy, and that each of them knows whether or not their fellows are.

We begin by defining the relation holds/2 which we use to specify the formula that hold
in a particular state of the domain. Atoms of the form holds(F,T) are read: “formula F
holds in the step/state T .” On top of the relation holds/2, we use the relation initially/1
to represent the initial state axioms defining the formulae which must be satisfied by the
initial state. Atoms of the form initially(F) are taken to mean “formula F is initially
true.” With these relations in place, we constrain our allowed accessibility relations to those
which ensure that our initial state entails the correct formulae. The final part of our initial
state description is given in Listing 5.7.

Before continuing the with the answer-set prolog representation of the Classical Muddy
Children Domain, it bears repeating that at no point have the accessibility relations for the
agents been explicitly specified. Instead, they are derived programmatically using a generate
and test strategy. The rules in Listing 5.6 simply specify the general properties that the
accessibility relations must have under the S5 axiom system, while those in Listing 5.7 limit
the relations themselves to those which make the resulting Kripke world entail the set of
formulae specified by the relation initially/1. Using an answer set solver such as clingo
[21], we may compute the relevant accessibility relations (and thereby the minimal model
of the modal theory specified by the initial state axioms), as shown in Example 5.1. This
basic principle has been expanded upon in [9] to show the broader applicability of logic
programming to finding the models of various modal theories.

Example 5.1 (Generating the Initial State of the Domain). Let us suppose that program
Listings 5.1 through 5.7 have been collected into the following logic programming mod-

ules: domain-signature.lp; del-definitions.lp; and initial-state.lp. Using

the answer-set solver clingo, (and restricting the output to only those atoms formed by

90



holds(F, T) :- entailed_by(F, P, T), reference_point(P, T),

formula(F), point(P, T), step(T).

% It is common knowledge among the children that each of them knows

% whether or not their fellows are muddy

initially(c(or(k(a,m(b)),k(a,neg(m(b)))))).

initially(c(or(k(a,m(c)),k(a,neg(m(c)))))).

initially(c(or(k(b,m(a)),k(b,neg(m(a)))))).

initially(c(or(k(b,m(c)),k(b,neg(m(c)))))).

initially(c(or(k(c,m(a)),k(c,neg(m(a)))))).

initially(c(or(k(c,m(b)),k(c,neg(m(b)))))).

% It is also common knowledge among the children that none of them know

% whether or not they themselves are muddy

initially(c(neg(k(a,m(a))))).

initially(c(neg(k(a,neg(m(a)))))).

initially(c(neg(k(b,m(b))))).

initially(c(neg(k(b,neg(m(b)))))).

initially(c(neg(k(c,m(c))))).

initially(c(neg(k(c,neg(m(c)))))).

:- initially(F), not holds(F, 0).

Listing 5.7: ASP definition of the relations holds/2 and initial state axioms in the
Muddy Children Domain.

the predicate symbol k_reachable/4), we can obtain the accessibility relations shown in

Listing 5.82. Rendering the results graphically gives us precisely the Kripke world shown in

Figures 1.1 and 3.5.

⋄

2The output of clingo has been formatted for presentation purposes.
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$ clingo -n 0 domain-signature.lp initial-state.lp del-definitions.lp

k_reachable(w1,w1,a,0) k_reachable(w1,w1,b,0) k_reachable(w1,w1,c,0)

k_reachable(w2,w2,a,0) k_reachable(w2,w2,b,0) k_reachable(w2,w2,c,0)

k_reachable(w3,w3,a,0) k_reachable(w3,w3,b,0) k_reachable(w3,w3,c,0)

k_reachable(w4,w4,a,0) k_reachable(w4,w4,b,0) k_reachable(w4,w4,c,0)

k_reachable(w5,w5,a,0) k_reachable(w5,w5,b,0) k_reachable(w5,w5,c,0)

k_reachable(w6,w6,a,0) k_reachable(w6,w6,b,0) k_reachable(w6,w6,c,0)

k_reachable(w7,w7,a,0) k_reachable(w7,w7,b,0) k_reachable(w7,w7,c,0)

k_reachable(w8,w8,a,0) k_reachable(w8,w8,b,0) k_reachable(w8,w8,c,0)

k_reachable(w1,w2,c,0) k_reachable(w1,w3,b,0) k_reachable(w1,w5,a,0)

k_reachable(w2,w1,c,0) k_reachable(w2,w4,b,0) k_reachable(w2,w6,a,0)

k_reachable(w3,w1,b,0) k_reachable(w3,w4,c,0) k_reachable(w3,w7,a,0)

k_reachable(w4,w2,b,0) k_reachable(w4,w3,c,0) k_reachable(w4,w8,a,0)

k_reachable(w5,w1,a,0) k_reachable(w5,w6,c,0) k_reachable(w5,w7,b,0)

k_reachable(w6,w2,a,0) k_reachable(w6,w5,c,0) k_reachable(w6,w8,b,0)

k_reachable(w7,w3,a,0) k_reachable(w7,w5,b,0) k_reachable(w7,w8,c,0)

k_reachable(w8,w4,a,0) k_reachable(w8,w6,b,0) k_reachable(w8,w7,c,0)

SATISFIABLE

Models : 1

Calls : 1

Time : 0.702s (Solving: 0.03s 1st Model: 0.00s Unsat: 0.03s)

CPU Time : 0.621s

Listing 5.8: Accessibility relations derived for the initial state of the Classical Muddy
Children Domain

5.1.4 Representing the Effects of Actions

Having specified the initial state of the trajectory, we turn our attention towards specifying
the effects of the action declare('). As has been discussed previously, such actions are public
announcements, and a close analysis of the update model semantics ofm+ fromChapter 3.2
and [4, 43] shows that the effects of such actions are to remove those points points from
the Kripke world which fail to satisfy ', and to modify the agents’ accessibility relations
accordingly. All other points carry over to the successor state. This is shown in Listing 5.9,
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-point(P, T) :-

occurs(declare(F), T1), not entailed_by(F, P, T - 1),

point(P, T - 1), action(declare(F)), step(T), step(T - 1).

point(P, T) :-

point(P, T - 1), not -point(P, T),

step(T), step(T - 1).

k_reachable(P1, P2, A, T) :-

k_reachable(P1, P2, A, T - 1),

point(P1, T), point(P1, T - 1),

point(P2, T), point(P2, T - 1),

agent(A), step(T), step(T - 1).

value_of(F, V, P, T) :-

value_of(F, V, P, T - 1),

point(P, T), point(P, T - 1),

step(T), step(T - 1).

reference_point(P, T) :-

reference_point(P, T - 1),

point(P, T), point(P, T - 1),

step(T), step(T - 1).

Listing 5.9: ASP definition of the effects of the action declare(') in the Muddy
Children Domain.

and bears a close reading.
The first rule captures the idea that occurrences of the action declare(F ) remove from the

successor state those points which do not entail F . Next is a default which states that if P was
a point in the state T − 1, it will remain a point state T , unless otherwise specified. Finally,
we define a quasi-inertial property on the part of our accessibility relations: namely that the
accessibility relations pertaining to those points which remain in the successor Kripke world
are unchanged. Similarly, their interpretations carry over into the successor state, as does
the reference point.

93



occurs(declare(or(m(a),m(b),m(c))), 0).

occurs(declare(neg(k(A,m(A)))), 1) :- agent(A).

occurs(declare(neg(k(A,neg(m(A))))), 1) :- agent(A).

occurs(declare(neg(k(A,m(A)))), 2) :- agent(A).

occurs(declare(neg(k(A,neg(m(A))))), 2) :- agent(A).

Listing 5.10: ASP definition of the domain history in the Muddy Children Domain.

5.1.5 Representing the Trajectory

We conclude our representation by specifying the trajectory described in the Classical
Muddy Children Problem. This is done through the relation occurs/2, where atoms of the
form occurs(A,S) are read as: “action a occurs in the state S.” According to the problem
description, the first action which occurs is the father’s declaration that at least one of the
children is muddy. This is represented in our vocabulary by an occurrence of the action
declare(mA ∨ mB ∨ mC) in the initial state.

The remaining actions that we must model are the children’s repeated answers to their
father’s queries as to whether or not they know if they are muddy. The children answer in the
negative twice following their father’s initial declaration, which we specify (for simplicity)
as occurrences of two parallel declarations: that they do not know that they are muddy; and
that they do not know that they are not muddy. The entire trajectory is given by the domain
history described in Listing 5.10.

Let Πmc denote the logic program developed in this chapter. Πmc has a number of inter-
esting properties, one of which is described in Theorem 5.1, and presented in Example 5.2.
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Theorem 5.1. Let a1, a2, and a3 be defined as follows:

a1 = declare(mA ∨ mB ∨ mC)

a2 = declare(¬�m� ∧ ¬�¬m�)

a3 = declare(¬�m� ∧ ¬�¬m�)

Πmc has a single answer set corresponding to the solution of the the ClassicalMuddy Children

Problem forN = K = 3 described by the trajectory (�0, a1, �1), (�1, a2, �2), (�2, a3, �3).

Example 5.2 (Computing the Full Trajectory in the Muddy Children Domain). Let us
suppose that program Listings 5.1 through 5.7 have been collected into the logic programming

modules: domain-signature.lp; del-definitions.lp; and initial-state.lp. In

addition, let Listings 5.9 and 5.10 be defined in the modules action-definitions.lp and

domain-history.lp respectively. Using the answer-set solver clingo, (and restricting

the output to only those atoms formed by the predicate symbol point/2), we can see the

evolution of the set of points comprising the Kripke world which represents the state of the

domain over time in Listing 5.11.

⋄

The presentation of Πmc lays an important foundation for the subsequent section on
temporal projection as a careful reader will notice that a very specific instance of the temporal
projection problem dealing with the consequences of the action declare is dealt with in Πmc .
In the next section we will present a generalization of the ideas discussed here to provide an
answer-set prolog representation of the semantics of m+ and show its application to the
temporal projection problem.
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$ clingo -n 0 domain-signature.lp initial-state.lp del-definitions.lp

action-definitions.lp domain-history.lp

point(w1,0) point(w2,0) point(w3,0) point(w4,0)

point(w5,0) point(w6,0) point(w7,0) point(w8,0)

point(w7,1) point(w6,1) point(w5,1) point(w4,1)

point(w3,1) point(w2,1) point(w1,1)

point(w1,2) point(w2,2) point(w3,2) point(w5,2)

point(w1,3)

SATISFIABLE

Models : 1

Calls : 1

Time : 3.752s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 3.645s

Listing 5.11: Derived trajectory in the Classical Muddy Children Domain.

5.2 An ASP Semantics for m+

The previous sections detailed a domain specific answer-set prolog representation in
the context of the Classical Muddy Children Problem. In this section, we generalize the
representation and present an answer-set prolog realization of the update model semantics of
m+ as described in Chapter 3.2, from the perspective of automating the temporal projection
problem. Briefly stated, temporal projection involves answering the following question:
“Given a state � and an action a, what is the successor state(s) obtained by performing a in
�?”
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Recall from Definition 3.15, that the transition function of m+ is defined as follows:

ΦΔ(�, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� ⊗ Uo(�, a) ontic action
� ⊗ Us(�, a) sensing action
� ⊗ Ua(�, a) otherwise

where Δ is an action description, � is a state of the domain, and a is an action. In the prior
sections of this chapter, we have already presented a general notation for the notion of a state
of the domain as described by a Kripke world, along with a translation of the initial state
axioms into answer-set prolog. What remains is: the definition of a general representation of
the various causal laws and axioms of m+ for the purposes of defining actions and their
effects; a set of lp-functions [17] corresponding to the functions Uo, Us, and Ua used by
the transition function for obtaining the update instance for an action occurrence; and the
representation of the update execution operator⊗.

5.2.1 Representing Actions and their Effects

When it comes to representing actions and their effects, it is important to keep in mind
a clear separation between action occurrences as specified in the domain history and the
semantic objects defined by their corresponding update instances. The domain history,
which serves as a record of the action occurrences at each step of a trajectory, is defined via
the predicate occurs/2 as detailed in the previous sections. In this section, we present a
notation for actions and their effects based on the notion of named records whose fields on
some level correspond to various components of their respective causal laws/axioms in an
m+ action description.

In general, actions are defined as record-like structures whose fields are defined by the
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following relations:

• action(A) - atoms of this form are define the names of individual actions and are
read as: “A is an action.”

• type(A,T) - atoms of this form define the type of the given action. As we’ve seen,
actions in m+ are categorized into three broad groups: sensing, communication, and
ontic/physical. Atoms of this form are read as: “action A is of the type T .”

The remaining fields are conditionally included as part of the record based on the action’s
type:

• announces(A,F) - atoms of this form define the formula that is being announcement
by a communication action, and are read as: “action A announces the formula F .”
The reader should notice the similarity between atoms of this type and announcement

axioms of m+ as shown in (3.5).

• determines(A,F) - atoms of this form define the fluent revealed by a sensing action,
and are read as: “action A determines the value of the fluent F .” As with the previous
predicate, the reader should not that this directly reflects the intent conveyed by sensing
axioms of m+ defined in (3.4).

• effect(A,F) - atoms of this form define the effect of an ontic or physical action, and
are read as: “action A makes the fluent literal F true.” As before, this conveys part of
the intent behind dynamic causal laws of m+ seen in (3.3).

The final field of our record, precondition/3, is included for ontic actions and defines the
preconditions associatedwith the action’s effects. Atoms of the form precondition(A,F,P)
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are read as: “actionA’s effectF has the precondition P .” For simplicity there is an underlying
assumption that only one predicate of this type is defined for each action/effect pair3.

Now that we’ve defined the vocabulary for representing actions generally, we recall that
individual action occurrences are described in a domain history as collection of facts of the
form occurs(A,T) and are read as: “action A occurs at time T .” This is in keeping with our
prior established notation and the general representation style from [2]. This is also in line
with our intuition that an action occurrence is a specific instance of an action that transpires
at a particular time.

As an intermediate step to defining our lp-functions, we also give definitions for the
predicates which define the frames of reference that the agents of the domain have with respect
to an individual action occurrence. In keeping with the intuition and various perspective
axioms outlined in Chapter 3.1, these are:

• observes(AG,A,T) - defines the set of agents which have first-hand knowledge of
the action occurrence (i.e. the full observers). Atoms of this form are read as: “agent
Ag is a full observer of the occurrence of the action A at time T .”

• aware(AG,A,T) - defines the set of agents which have second-hand knowledge of the
action occurrence (i.e. the partial observers). Atoms of this form are read as: “agent
Ag is aware of the occurrence of action A at time T .”

• oblivious(AG,A,T) - defines the set of agents who are oblivious of the action occur-
rence. Atoms of this final form are read as: “agent AG is oblivious of the occurrence
of the action A at time T .”

The notation that we have established up to this point for defining actions and their effects
additionally defines the input predicates for our lp-functions for Uo, Us, and Ua. We now

3This assumption is in place due to practical programming considerations, not mathematical ones.

99



present our desired output predicates. Intuitively, each lp-function will take as its input the
relevant portions of the domain description, a description of a state, and an action occurrence
from the domain history, and will give as output a set of facts defining the corresponding
update instance as specified by Definitions 3.14, 3.12, and 3.13.

Recall from Definition 2.15 that an update model representing an action occurrence is a
tuple of the form (E,R�1 ,… , R�n , pre, sub), where:

• E is a finite, non-empty set of events

• each R�i is a binary relation on E called an accessibility relation for agent �i

• pre ∶ E → Σ assigns a precondition to each event
• sub ∶ E → SUBΣ assigns a -substitution to each event representing its direct

effects

In keeping with this definition, the update model for a particular action occurrence is
represented as a named record whose fields reflect the relevant fields of the tuple. In this
particular, we assume that only one action occurs at any given time, and hence we can
associate an update model with the action occurrence through their time step in the domain
history. Update models are defined by the following predicates:

• event(E,T) - atoms of this from are read as: “E is an event associated with the update
model from time T .”

• reference_event(E,T) - atoms of this form are read as: “E is the reference event
associated with the update model for time T .”

• e_reachable(E1,E2,A,T) - atoms of this form are read as: “the pair (E1, E2) belongs
to the accessibility relation for agent A in the update model defined for time T .”
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• pre(F,E,T) - atoms of this form define the preconditions associated with individual
events in the update model and are read as: “formula F is the precondition for event
E in the update model defined at time T .”

• sub(F1,F2,E,T) - atoms of this define the -substitution associated with a particular
event and are read as: “F1 → F2 is the -substitution associated with the event E in
the update model defined for time T .”

In the subsections that follow, we’ll examine how this vocabulary is used to translate actions
of each distinct category into their corresponding update instances.

What remains is to complete the definitions of the various lp-functions from action

occurrences to update instances in the language of m+. For reference, we keep in mind
the generalized update instance for such actions as presented in Figures 3.2 to 3.4. In this
section we present the lp-function for deterministic ontic actions, leaving those for sensing
and communication actions to the appendices4.

Every deterministic ontic action, a, has an event associated with its direct effects, Φ, in
addition to the so-called inertial event, "i. The relevant rules are given in Listing 5.12.

The preconditions associated with the individual events are almost directly pulled from
the corresponding input predicate precondition/3 in a fairly straightforward fashion, while
the precondition for the inertial event is defined to be ⊤ as per Definition 3.14. Listing 5.13
shows the corresponding definitions.

Having defined both the events themselves and their respective preconditions, we now
shift our focus to defining the requisite substitutions. Taking into account Definition 3.14,
if according to our action description [a causes '], we define the requisite substitution
{¬' → ',' → '}. Similarly, if [a causes ¬'] we define the substitution {' → ¬',¬' →

4The reader should note that the definitions of the lp-functions for both sensing and communication actions
follow in the exact same style however.
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% Define the event representing the action’s effects taking hold.

event(e(Phi,T), T) :-

occurs(A, T), type(A, ontic),

effect(A, Phi), action(A).

% Define the inertial event.

event(e(T), T) :-

occurs(A, T), type(A, ontic),

action(A).

% Mark e(Phi,T) as the reference event.

reference_event(e(Phi,T), T) :-

occurs(A, T), type(A, ontic),

event(e(Phi,T), T), action(A).

Listing 5.12: ASP definition of the events for the update instance corresponding to an
occurrence of a deterministic ontic action.

% Define the precondition for the reference event.

pre(Psi, e(Phi,T), T) :-

precondition(A, Phi, Psi),

occurs(A, T), type(A, ontic),

effect(A, Phi), event(e(Phi,T), T),

action(A).

% Define the precondition for the inertial event.

pre(top, e(T), T) :-

occurs(A, T), type(A, ontic),

event(e(T), T), action(A).

Listing 5.13: ASP definition of the preconditions associated with the events in an
update instance corresponding to an occurrence of a deterministic ontic action.
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% If the action causes a fluent to be made true, then the corresponding

% substitution has the form ¬F → F
sub(neg(Phi), Phi, e(Phi,T), T) :-

occurs(A, T), type(A, ontic),

effect(A, Phi), fluent(Phi),

event(e(Phi,T), T), action(A).

% If the action causes a fluent to be made false, then the corresponding

% substitution has the form F → ¬F
sub(Phi, neg(Phi), e(neg(Phi),T), T) :-

occurs(A, T), type(A, ontic),

effect(A, neg(Phi)), fluent(Phi),

event(e(neg(Phi),T), T), action(A).

% Assign the identity substitution to all other fluents in the domain.

sub(Psi, Psi, e(Phi,T), T) :-

occurs(A, T), type(A, ontic), fluent(Psi),

not effect(A, Psi), not effect(A, neg(Psi)),

event(e(Phi,T), T), action(A),

Phi != Psi.

sub(Psi, Psi, e(neg(Phi),T), T) :-

occurs(A, T), type(A, ontic), fluent(Psi),

not effect(A, Psi), not effect(A, neg(Psi)),

event(e(neg(Phi),T), T), action(A),

Phi != Psi.

Listing 5.14: ASP definition of the -substitutions for events modeling the effects of
an action occurrence.

¬'}. Lastly, we must associate the identity substitution with the inertial event, and all
remaining formulae are unaffected by the action. The corresponding definitions are given in
Listings 5.14 and 5.15.

The final set of rules given in Listing 5.16 defines the accessibility relations for the agents
in accordance with Definition 3.14.
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% Define the substitutions for the inertial event. In this semantics,

% the identity substitution is assigned for every fluent.

sub(Phi, Phi, e(T), T) :-

occurs(A, T), type(A, ontic),

event(e(T), T), action(A),

fluent(Phi).

Listing 5.15: ASP definition of the -substitutions associated with the inertial event.

% Define the accessibility relations for the update model.

e_reachable(e(Phi,T), e(Phi,T), AG, T) :-

occurs(A, T), type(A, ontic),

observes(AG, A, T), event(e(Phi,T), T),

agent(AG), action(A).

e_reachable(e(Phi,T), e(T), AG, T) :-

occurs(A, T), type(A, ontic),

oblivious(AG, A, T), event(e(Phi,T), T),

event(e(T), T), agent(AG), action(A).

e_reachable(e(T), e(T), AG, T) :-

occurs(A, T), type(A, ontic),

event(e(T), T), agent(AG), action(A).

Listing 5.16: ASP definition of the accessibility relations associated the update in-
stance for an occurrence of a deterministic ontic action.

5.2.2 Representing the Update Execution Operator

Recall from Definition 2.17 that the update execution operator which is at the heart of
the transition function in Definition 3.15 is essentially the product of two graphs: the Kripke
world corresponding to the current state of the domain; and the update instance representing
an action. The representation of the operator in Listing 5.17 directly reflects its definition.

The first part of our representation involves defining the set of potential points which
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% Define points in the successor state

point(w(P,E), T) :-

point(P, T - 1), event(E, T - 1),

pre(Phi, E, T - 1), entailed_by(Phi, P, T - 1),

action_occurs(T - 1).

% Define the reference point for the successor state

reference_point(w(P,E), T) :-

reference_point(P, T - 1), reference_event(E, T - 1),

point(w(P,E), T), action_occurs(T - 1).

% Define the accessibility relations for the successor state.

k_reachable(w(P1,E1), w(P2,E2), AG, T) :-

k_reachable(P1, P2, AG, T - 1), e_reachable(E1, E2, AG, T - 1),

point(w(P1,E1), T), point(w(P2,E2), T),

point(P1, T - 1), point(P2, T - 1),

event(E1, T - 1), event(E2, T - 1),

agent(AG), action_occurs(T - 1).

% Define the interpretation functions due to identity substitutions.

value_of(Phi, top, w(P,E), T) :-

value_of(Phi, top, P, T - 1), sub(Phi, Phi, E, T - 1),

point(w(P,E), T), point(P, T - 1), event(E, T - 1),

fluent(Phi), action_occurs(T - 1).

value_of(Phi, bot, w(P,E), T) :-

value_of(Phi, bot, P, T - 1), sub(Phi, Phi, E, T - 1),

point(w(P,E), T), point(P, T - 1), event(E, T - 1),

fluent(Phi), action_occurs(T - 1).

% Define the interpretation functions for substitutions of the form F → ¬F
value_of(Phi, bot, w(P,E), T) :-

value_of(Phi, top, P, T - 1), sub(Phi, neg(Phi), E, T - 1),

point(w(P,E), T), point(P, T - 1), event(E, T - 1),

fluent(Phi), action_occurs(T - 1).

% Define the interpretation functions for substitutions of the form ¬F → F
value_of(Phi, top, w(P,E), T) :-

value_of(Phi, bot, P, T - 1), sub(neg(Phi), Phi, E, T - 1),

point(w(P,E), T), point(P, T - 1), event(E, T - 1),

fluent(Phi), action_occurs(T - 1).

Listing 5.17: ASP definition of the update execution operator.
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comprise the Kripke world corresponding to the successor state. This reflects the first part
of the operator’s definition:

M ′.W = {(!� , "�) ∣ !� ∈M.W , "� ∈ U.E, (M,!�) ⊧ U.pre("�)}

The next part of our representation reflects the part of the definition defining the accessi-
bility relations for each agent in the Kripke world defining the successor state:

M ′.Ri = {((!� , "�), (!� , "�)) ∣ (!� , !�) ∈M.Ri and ("�, "�) ∈ U.Ri}

Finally, the third set of rules concerns the interpretation functions associated with each
point in the Kripke world defining the successor state.

M ′.�((!, "))(f ) = U.sub(")(f )

5.3 Temporal Projection for m+ via ASP

Now that the answer-set prolog representations of the notions of: states of the domain;
modal formulae and the entailment relation; actions and the domain history; the lp-functions
from action occurrences to update instances; and the update execution operator; in this
section we illustrate how the individual modules can be put together to give an answer-set
programming semantics for m+, and be applied to the task of temporal projection. Recall
that the semantics of m+ is given through the transition function in Definition 3.15:

ΦΔ(�, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� ⊗ Uo(�, a) ontic action
� ⊗ Us(�, a) sensing action
� ⊗ Ua(�, a) otherwise

As was mentioned previously, the temporal projection problem involves answering
the following question: “Given a state � and an action a, what is the successor state(s)
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obtained by performing a in �?” It is clear that the definition of ΦΔ(�, a) already provides
a mathematical formulation of the problem’s solution. What remains is for us to discuss a
means of automating this reasoning task through the use of logic programming.

Taking a step back, we can see that each individual component of the transition function
corresponds to a a logic program (or fragment of a program) developed in the previous
sections. For reference, we associate the following names with each individual answer-set
prolog module:

• ΠΣ - represents the module containing the definition of the domain signature, Σ,
modulo the definitions of actions as shown in Section 5.1.1.

• Πdel - represents the syntax and semantics of the subset of modal logic that is relevant
to the domain in question as shown in Sections 5.1.2 and 5.1.2.2.

• Π� - represents a particular state of the domain according to the vocabulary described
in Section 5.1.2.1. Typically this module will define the initial state of the domain
(if the focus is planning), or the initial state of a trajectory of interest (for temporal
projection).

• Π - represents the module defining the actions of the domain and their respective
effects as shown in Section 5.2.1.

• Πontic - represent the module defining the lp-function from action occurrences of ontic
actions to their corresponding update instances. The lp-function was presented in
Section 5.2.1. Modules for sensing, Πsns, and announcement actions Πann are also
present.

• Πℎ - represents the module defining the domain history (i.e. a record of the action
occurrences which took place from a particular state/step of a trajectory in the broader
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diagram).

• Π⊗ - represents the module defining the update execution operator as shown in Sec-
tion 5.2.2.

Theorem 5.2. LetΔ be an action description ofm+, � = (M,!) be a state of the transition

diagram defined by Δ, and a be an action. The successor state(s) obtained by performing

the action a in the state � are given as part of the answer-set(s) of the logic program Πm+
given below:

ΠΔ ∪ Π� ∪ Π⊗ ∪ Πℎ ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Πontic ontic action

Πsns sensing action

Πann announcement action

(5.1)

where ΠΔ = ΠΣ ∪ Π ∪ Πdel.

Theorem 5.2 establishes the equivalence between ΦΔ(�, a) and the union of a set of
logic programs, and consequently provides a means for us to automate the task of temporal
projection.

Example 5.3 (Temporal Projection in the Concealed Coin Domain: Single Action). Recall
the Concealed Coin Domain from Example 5.3: Three agents, A, B, and C , are together in

a room with a box which contains a coin. Suppose that this fact, together with the fact that

none of the agents knows which face of the coin is showing is a commonly held belief among

them. Furthermore let us suppose that all of the agents are attentive and that this too is a

commonly held belief. Lastly, let us assume that the coin is facing heads up and that all of

the beliefs of the agents are true.

An agent may peek inside to determine which face of the coin is showing. In addition,

agent may signal or distract one of his fellows, thereby causing him to be respectively attentive
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step(0..1).

agent(a; b; c).

fluent(locked).

fluent(heads).

fluent(attentive(AG)) :- agent(AG).

value(top). value(bot).

Listing 5.18: ASP definition of the domain signature for the Concealed Coin Domain.

or inattentive. Attentive agents are fully aware of what transpires around them. What is the

successor state obtained after agent A distracts agent C?

In keeping with our past examples, we begin by representing the domain signature and

initial state of the domain as shown in Listings 5.18 and 5.19. These modules correspond

to ΠΣ and Π� and are inherently domain dependent. Πdel while mathematically may be

considered domain independent, from a practical consideration is also treated as a do-
main dependent module, but the listing has been omitted from the example in the interest

of clarity of presentation. Πℎ which defines the domain history contains the single fact

occurs(distract(a,c), 0). The remaining modules are unchanged from their prior

descriptions in this chapter.

⋄

Intuitively, the consequences of A distracting C ought to be that where it was initially
common knowledge that C was attentive, it now becomes common knowledge that he is not.
Computing the answer sets of the program:

ΠΔ ∪ Π� ∪ Π⊗ ∪ Πℎ ∪ Πontic
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point(w1, 0). point(w2, 0).

reference_point(w1, 0).

value_of(locked, top, w1, 0).

value_of(heads, top, w1, 0).

value_of(attentive(a), top, w1, 0).

value_of(attentive(b), top, w1, 0).

value_of(attentive(c), top, w1, 0).

value_of(locked, top, w2, 0).

value_of(heads, bot, w2, 0).

value_of(attentive(a), top, w2, 0).

value_of(attentive(b), top, w2, 0).

value_of(attentive(c), top, w2, 0).

k_reachable(w1, w1, a, 0). k_reachable(w1, w2, a, 0).

k_reachable(w2, w1, a, 0). k_reachable(w2, w2, a, 0).

k_reachable(w1, w1, b, 0). k_reachable(w1, w2, b, 0).

k_reachable(w2, w1, b, 0). k_reachable(w2, w2, b, 0).

k_reachable(w1, w1, c, 0). k_reachable(w1, w2, c, 0).

k_reachable(w2, w1, c, 0). k_reachable(w2, w2, c, 0).

holds(F, T) :-

entailed_by(F, P, T), reference_point(P, T),

modal_formula(F), point(P, T), step(T).

Listing 5.19: ASP definition of the initial state for the Concealed Coin Domain.
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$ clingo -n 0 domain-signature.lp initial-state.lp del-definitions.lp

action-definitions.lp domain-history.lp lp-ontic.lp

holds(c(attentive(c)),0)

holds(c(neg(attentive(c))),1)

SATISFIABLE

Models : 1

Calls : 1

Time : 4.052s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 4.031s

Listing 5.20: Partial output of temporal projection for distract(A,C) in the Concealed
Coin Domain.

as shown in Listing 5.20 shows that the answer set matches our intuition5.

Example 5.4 (Temporal Projection in the Concealed Coin Domain: Multiple Actions). In
this example, we examine temporal projection over a sequence of elementary actions in a

slight elaboration of the Concealed Coin Domain. Let us assume that the box is initially

locked, and may be unlocked via the action unlock. This action is modeled rather simply

by introducing a new ontic action into the domain, and representing its effects by adding a

dynamic causal law and corresponding perspective axioms. Suppose that agent A wishes to

peek into the box and therefore learn whether the coin is facing heads or tails, but that he

wishes to do so without the knowledge of agent C . One possible plan to achieve this goal

would be:

[distract(A,C), unlock(A), peek(A)]

Temporal projection would enable us to verify the plan, and to see what other potential

consequences of the action sequence might be. If the coin is initially facing heads up, then

5As before, the output of clingo has been formatted and trimmed for presentation purposes.
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$ clingo -n 0 domain-signature.lp initial-state.lp del-definitions.lp

action-definitions.lp domain-history.lp lp-ontic.lp

lp-sensing.lp

holds(op(a,heads),3)

holds(op(c,locked),3)

holds(op(c,op(a,locked)),3)

holds(neg(op(c,op(a,heads))),3)

holds(neg(op(c,op(a,neg(heads)))),3)

SATISFIABLE

Models : 1

Calls : 1

Time : 26.709s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.01s)

CPU Time : 26.292s

Listing 5.21: Partial output of temporal projection for the action sequence from
Example 5.4.

at a minimum, A will become aware of this fact, and C will be oblivious given that he has

been distracted with other matters. Computing the answer sets of the program:

ΠΔ ∪ Π� ∪ Π⊗ ∪ Πℎ ∪ Πontic ∪ Πsns

using the new domain history and updated action description gives the output6 shown in

Listing 5.21. Examining the answer sets shows once again that the formulae captured by the

relation holds/2 comports with our intuition. ⋄

5.4 Multi-Agent Planning for m+ via ASP

Temporal projection as discussed in the previous section forms the basis of a more
general reasoning task known as planning. The planning problem centers on answering the

6Once again, he output of clingo has been formatted for presentation purposes.

112



following question: “Let  be a dynamic domain defined by an action description Δ; �0 be
a state in the transition diagram defined by Δ; and �G be a goal state. Is there a sequence of
actions which labels a path from �0 to �G in the transition diagram defined by Δ?”

The approach taken in [2, 24] (and within the action language community more broadly)
for solving the planning problem follows a generate and test strategy. Candidate plans are
generated via a logic program known as a planning module, and temporal projection is used
in conjunction with a goal specification module, to evaluate whether or not the candidate plan
defines an appropriate trajectory. In this section we present both modules in a general fashion
similar to the way temporal projection was presented in the previous section, followed by
an in-depth presentation of planning in the context of the Concealed Coin Domain from
Example 3.6, and the Escapee Domain of Example 3.17.

5.4.1 Goal Specification

Goal states are defined in terms of the set of properties that they must satisfy, which in
a single agent context are described by consistent sets of fluent literals. In a multi-agent
context goals may be specified in terms of both ontic and epistemic properties of the domain.
The relevant properties of a goal state are defined through a new pair of relations, goal and
goal/1, which are understood as follows:

• goal - this relation represents the notion of the goal having been met. The atom goal

is read as: “the desired goal has been reached at some step/state along the trajectory
being investigated.”

• goal/1 - this relation represents the notion of an individual step/state satisfying the
desired goal. Atoms of the form goal(T) are read as: “the desired goal has been
reached at step T of the current trajectory.”
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% The goal has been reached if there exists some step of the trajectory

% T within the time horizon N which satisfies the goal.

goal :- goal(T),

T <= N,

step(T),

horizon(N).

% Step T of a trajectory satisfies the goal if formulae F1,… , Fn
% hold in that state.

goal(T) :- holds(F1, T), ..., holds(Fn, T),

step(T).

% The goal must be eventually satisfied.

:- not goal.

Listing 5.22: Generalized ASP representation of the domain specific part of a goal
specification.

The relation goal/1 is defined in terms of the relation holds/2 from Section 5.1.3.
Individual properties are specified by modal formulae, and the goal itself is given in terms
of their conjunction: '1 ∧…∧ 'n. Listing 5.22 shows a domain independent generalization
of the goal specification module. It is important to note that in general, we limit our search
for plans/paths whose length is constrained to within a certain time horizon.

5.4.2 Action Generation

Action generation is a domain independent module which serves as the generate compo-
nent of the generate and test strategy for planning. Candidate domain histories are generated
by a choice rule, and various other heuristic rules may be included to constrain/refine the
kinds of potential plans which are explored. Temporal projection is then applied in combi-
nation with the goal module to determine whether or not the trajectories label a path from
the initial state to a goal state. For the purposes of this dissertation, we limit the kinds of
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% Choose exactly one action A for each step of the trajectory if the

% goal has not been achieved.

1{occurs(A,T) : action(A)}1 :-

not goal(T), step(T),

horizon(N), T <= N.

Listing 5.23: Elementary ASP action generator in the language of clingo.

plans under consideration to those in which only a single action occurs at any particular

step/state along the trajectory. Listing 5.23 shows an elementary action generator (in the
language of the clingo answer-set programming system) which selects exactly one action
occurrence for each step of the candidate trajectory. Listing 5.24 shows the same module
expressed in the language of the DLV system. It should be noted that while equivalent, the
input language of the DLV system is more closely inline with the definition of the answer-set
prolog language given in Chapter 2.

Example 5.5 (Multi-Agent Planning in the Concealed Coin Domain). In the context of

the Concealed Coin Domain, suppose that agent A wishes to determine the value of the

fluent heads, but to do so without the knowledge of agent C . Example 5.4 presented one

potential plan to accomplish this task, but how might we derive the trajectory? In keeping

with the discussion on planning, we begin by specifying the goal as shown in Listing 5.25. If

we extend our planner by adding a restriction which limits the actions considered to only

those performed by agent A, and limit the class of modal formulae to only those which are

relevant for evaluating whether the goal has been reached or not, the answer sets given by

the program (where Πg and Πpl denote the goal and planning modules):

ΠΔ ∪ Π� ∪ Π⊗ ∪ Πontic ∪ Πsns ∪ Πg ∪ Πpl

are shown in Listing 5.26. ⋄
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% If the goal has not been reached at a given step within our horizon,

% every action either occurs or does not.

occurs(A, T) | -occurs(A, T) :-

not goal(T), step(T),

horizon(T), T <= N.

% It is not possible for more than one action to occur at a given step

% of the candidate trajectory.

:- occurs(A1, T), occurs(A2, T),

action(A1), action(A2),

A1 != A2.

% At each step along the candidate trajectory at least one action must

% transpire (i.e., we cannot have a state in which no action is taken).

:- goal(T1), not goal(T1 - 1),

step(T1), step(T2), T2 < T1,

not action_taken(T2).

action_taken(T) :- occurs(A, T).

Listing 5.24: Elementary ASP action generator in the language of DLV.

goal(T) :-

holds(neg(locked), T), holds(op(a,heads), T),

holds(neg(op(c,op(a,heads))), T), step(T).

goal(T) :-

holds(neg(locked), T), holds(op(a,neg(heads)), T),

holds(neg(op(c,op(a,neg(heads)))), T), step(T).

Listing 5.25: Goal specification for Example 5.5.

5.5 Comparison with other Methodologies

At this point it is worth emphasizing that both action languages and answer-set prolog
are knowledge representation languages, and not planning languages. In fact, of those logic
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$ clingo -n 0 domain-signature.lp initial-state.lp del-definitions.lp

action-definitions.lp lp-ontic.lp lp-sensing.lp goal.lp plan.lp

Solving...

Answer: 1

occurs(distract(a,c),0) occurs(unlock(a),1) occurs(peek(a),2)

Answer: 2

occurs(unlock(a),0) occurs(distract(a,c),1) occurs(peek(a),2)

SATISFIABLE

Models : 2

Calls : 1

Time : 79.602s (Solving: 3.23s 1st Model: 0.54s Unsat: 2.59s)

CPU Time : 78.773s

Listing 5.26: Partial output of planning from Example 5.5.

programs presented in the previous sections, only those in Sections 5.4.1 and 5.4.2 pertain
to the planning problem specifically. This is in marked contrast with other related work such
as the classical planning approaches of [40, 41] and DEC-POMDP approaches outlined in
[30], and bears some discussion.

As has been stated previously, both m+ and m are primarily to be understood as
knowledge representation languages, and hence a general means of describing dynamic multi-
agent domains. What this means is that they are intended to provide a concise, elaboration
tolerant, and intuitive means of describing potentially huge and complex transition systems
characterizing such domains. Once such a system has been described, various different
kinds of reasoning tasks can then be cast in terms of these diagrams. As has been mentioned
before, planning is reducible to finding a path in the diagram from some initial state to a
goal state. Temporal projection is reducible to finding the successor state(s) in accordance
with the diagram’s transition function. Query answering is reducible to determining various
properties of a particular state of the diagram.

Before we compare this approach to classical or DEC-POMDP based planning, some
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elaboration of the fundamental assumptions with regards to the nature of both the action
descriptions and respective transition diagrams ofm+ andm is warranted. Specifically,
the approach outlined in this dissertation makes two assumptions:

1. The knowledge/beliefs of the agents with regards to the initial state are shared and
complete.

2. The knowledge of the agents with regards to actions and their effects is also shared
and complete.

Both of these assumptions are inherited from the approach taken by the languages and,
and are what make the framework capable of modeling both cooperative and adversarial
planning. Before discussing this in some more detail, we also note that there is a distinction
between the tasks of planning and execution, both of which are discrete steps within what is
called an agent-loop [2].

Consider the “Escapee Domain” as outlined in Chapter 3.3.2 and also in [15]. The
scenario is an example of an adversarial planning situation in which agents A and C must
work together against agent B. When finding a plan to achieve the goal of A’s escape it is
tempting to ask: “From whose perspective is the plan being generated?” or “Who is the active
reasoner?” Assumptions (1) and (2) render this question moot, as the transition diagram itself
is global in nature. This mirrors a certain intuition about the reasoning process — namely
that a dispassionate reasoner “steps outside himself” and reasons about how his actions
(and those of his fellows) may play out, in the third person. Once the plan is generated, the
execution phase of the agent loop comes into play, and it is here that the actual mechanics
of coordination (i.e., the question of how individual components of the plan are relayed to
other agents) is addressed. Such coordination is considered in the context of this work to be
done on a “metal-level.”
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5.6 Classical Planning Approaches

Thematically, the work done in [40, 41] centers on the application of classical planning
techniques in a multi-agent context. The work presented in this dissertation however seeks to
answer a more general question, namely “How can we represent and reason about dynamic

multi-agent domains?” This focus on knowledge representation and a view of reasoning
which includes tasks other than planning (such as temporal projection, query answering, and
diagnostic reasoning), leads to some significant differences.

With regards to [40], in keeping with the classical planning tradition, the authors’ choice
of representation languagemay be adequately described as amulti-agent extension to STRIPS,
achieved by adding to the language what are called restrictedmodal literals, which are defined
by the following grammar:

'⇒ p ∣ �' ∣ ¬'

where p is a proposition, and � is the name of an agent in the domain. Modal literals of the
form �' are read in the standard way as “agent � believes '.” For a number of reasons,
the depth of literals of this form is restricted7. In the action languages m+ and m, no
such restrictions are imposed. Furthermore, m+ and m are multi-modal, including
operators to describe more complex constructs such as common knowledge/belief and allow
for the use of modal formulae which are more expressive than restricted modal literals.

Another consequence of the use of restricted modal literals and classical planning systems
is that the definition of a state of the domain differs signifcantly from that used in both m+
and m. Rather than modeling a state as a Kripke world, a state is seen as a consistent
collection of restricted modal literals. By keeping the depth of such literals bound to a
positive integer N , these sets are finite, and the satisfaction of various axioms of belief

7In the paper the authors specifically deal with literals whose depth is ≤ 3.
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(specifically the KD45 axioms) is made explicit by encoding them directly as part of an
action’s effects. In both m+ and m, these axioms are characterized by the accessibility
relations of the agents and are an inherent property of the semantics. It should be noted
however that this approach is worth considering as an approximation semantics of m+
with the aim of improving the computational aspects of various reasoning tasks (such as the
approach taken for planning outlined in this chapter).

A final consequence that bears mentioning is tha by extending STRIPS, the formalism
of [40] lacks the notion of a state constraint in the vein of  and m. Specifically, they
represent “state constraints as ancillary conditional effects of actions.” This precludes them
from being able to model domains with recursive interdependencies between fluents [33]
and impacts the elaboration tolerance [38] of their formalizations as well.

The work presented in [41] addresses the application of classical planning techniques
to cooperative multi-agent planning domains in which the agents have both private and
public knowledge about the domain. More specifically, it describes a particular distributed
search algorithm which may be used to find plans for such problem domains. In part, due to
its emphasis on cooperative multi-agent planning and overall approach, the work appears
to share a similarity with that of [22]. Many of the aforementioned comparisons however
are still applicable, and an additional one is that both m+ and m model the domain
from the perspective of a system designer (who is outside of the domain itself), and not the
perspective of the individual agents operating within the domain as in. This means that there
is no notion of private or public fluents as in [41], and renders m+ and m incapable of
representing privacy preserving planning as envisioned in [41] not directly representable.
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5.7 DEC-POMDP Approaches

The DEC-POMDP approach outlined in [30] while interesting in its own right, is again,
not intended as a knowledge representation formalism, and consequently shares some of
the same distinctions that have already been outlined. Some additional distinctions are
worth commenting on however, in particular the way in which uncertainty is addressed. The
work presented in [30] describes several classes of uncertainty: regarding action outcomes;
the accuracy of sensor information; and uncertainty about the information of other agents.
Sensor data is not something considered in this work, so the discussion will center around
the other two categories.

One significant difference is how uncertainty is understood in each representation. DEC-
POMDPS understand/model uncertainty using probabilistic information (viewing probability
as a measure of degrees of belief). An important part of the definition of a DEC-POMDP is
the transition probability function which defines the probability of a transition from a state
� to �′ after an occurrence of an action a. This is a very different way of describing actions
and their effects (even nondeterministic effects) from the action language approach. Another
distinction is that uncertainty about beliefs of the agents is described in this work through
the use of disjunction and modal operators such as , not via probability. As an example,
the notion of an agent � being uncertain about the value of a fluent f would be modeled in
either m+ or m by the modal formula Af ∨ A¬f . Such operators may be nested,
allowing for the description of uncertainty about the beliefs of other agents present in the
domain as well, but in a courser way than with probability (which is a natural direction for
future research as outlined in Chapter 6.1.2).

DEC-POMDPS also model reasoning tasks such as planning in a profoundly different
way from the approach taken in this work. As was mentioned previously, the action language

121



approach reduces planning to finding a path in the transition diagram from some initial state
to a goal state, using a general purpose computation framework in the form of answer set
programming to accomplish this task. Each DEC-POMDP on the other hand is associated
with a reward function, and when combined with the probabilistic transition function, reduces
the task of planning to the optimization of an objective function. These two distinct models
differ substantially in terms of their underlying kinds, leading to divergent computational
models.

One final point worth mentioning is that in keeping with the action language tradition,
both m+ and m are languages which at their core are used to represent the transition
diagram at the heart of dynamic multi-agent domain. The approach outlined in [30] is a
computational approach, in that the mathematical object of a DEC-POMDP is defined,
but there does not appear to be a representation language by which a system designer may
in concise, intuitive, and elaboration tolerant manner describe such an object. This is an
important distinction that bears emphasis - m+ and m are knowledge representation
languages first, and the answer-set prolog semantics of m+, while important and having a
computational aspect, is not the primary feature of the language.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

To recap, this dissertation presents work done on combining the formalisms developed
within both the action language and dynamic epistemic logic communities, for representing
and reasoning about dynamic multi-agent domains. The action languages m and m+
provide a high level representation framework which distinguishes itself from the update
model approach of [4, 43] making explicit the distinction between an action (an object which
is described as part of a domain description), and an action occurrence (an instance of an
action which is recorded as part of the domain history). This distinction is made possible
by the fact that in both of these languages, the frames of reference of the agents are state
specific attributes, as opposed to information that distinguishes one action from another as
is the case with the update model approach.

My own future work in this area will center on attempting to answer three broad questions:

• What is the distinction between knowledge and belief and can we capture this distinc-
tion in high level formalism that is amenable to computation?

• How can we incorporate the idea of probability as a measure of an agent’s degree of
belief into a compatible formalism for multi-agent reasoning?

• How can we more efficiently automate various multi-agent reasoning tasks?

6.1 Regarding Knowledge and Belief

Recall from Definition 2.9, that the syntax of modal formulae presents us with only a
single class of modal operator,□�, which may be by convention interpreted to denote either
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the modality of knowledge or belief. Furthermore, as part of the semantics of such formulae,
Definition 2.10 tells us that the points of a particular Kripke world correspond on some level
to possible worlds, and that the accessibility relations describe a what the agents perceive
about them. From [19], if a pair (!�, !�) belongs to the accessibility relation of an agent �,
it is understood to mean something along the following lines: “from the possible world !� ,
agent � consider !� to be possible.” This means that neither modality is embedded directly
within the notion of a Kripke model/world itself. Rather, depending on the modality of
interest, only certain kinds of models are held up for consideration. If the modality of interest
is that of knowledge, then models which satisfy the S5 axioms are typically considered,
whereas the modality of belief is associated with other axiom systems. These axiom systems
constrain the kinds of accessibility relations that are part of the Kripke model for a particular
theory.

This means that neither the syntax, nor the semantics of modal formulae is expressive
enough to allow for the accommodation of both modalities within the same formalism.
Intuitively however, what an agent knows, and what he may believe, while related, are two
distinct pieces of information that ought to be representable within a multi-agent framework.

On a related note, the particular view of answer-set prolog that has been shown thus
far in this dissertation has been through a programmatic lens. In other words, answer-set
prolog has been used in this work not as a knowledge representation tool in its own right,
but as a programming language with high level features suitable for solving problems of
considerable combinatorial complexity. While a valid use of the language, there is another
way to understand the meaning of an answer-set prolog program that is more apropos to
the current discussion. Namely, rather than viewing an answer-set prolog program as a tool
for solving combinatorial problems, we can adopt and exploit an epistemic view, in that
programs are descriptions of the beliefs of an agent about a particular domain. This view
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was elaborated upon, leading to an extension of the base language to epistemic specifications
[29], a logic programming language which allows us to specify on some level both the
modalities of knowledge and of belief.

6.1.1 Epistemic Specifications

Epistemic specifications may be viewed as an extension of answer-set prolog by the
addition of a new class of literal, called a subjective literal, by applying the modal operators
 or  to literals. Intuitively, a literal of the form f may be understood as denoting that
“f is known”, while a literal for the formf may be taken to mean that “f may be believed.”
The reader should already note that the language contains within it both the modalities
of knowledge and belief, although the intuitions behind their meanings differ somewhat
from those which inform dynamic epistemic logic. Informally, and without getting into the
specifics, the semantics is based on the idea of a world view, which may be seen as a set
of answer sets of the base program, wheref is satisfied if f is satisfied by at least one
of the answer sets comprising a world view, and f is satisfied if f is true in all of them.
This parallels Definition 2.12 regarding the entailment relation for modal formulae of the
form □�', suggesting a relationship between between world views and certain kinds of
Kripke models, and also hints at a potential means of dealing with both modalities in a single
framework. Example 6.1 presents some preliminary thoughts on this point.

Example 6.1 (World Views and Kripke Models). Consider the following disjunctive logic
program, ΠA, describing the beliefs of an agent A:

p ∨ ¬p← q.

q.
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ΠA has a world view comprised of its two answer sets: {p, q} and {¬p, q}. One way that

this world view may be interpreted is shown by the S5-model in Figure 6.1.

The epistemic specification captured by ΠA satisfies the formula q and it should be

noted that the Kripke model entails the formula□Aq, suggesting a relationship between the

epistemic operator and the modal operator□A. A more important thing to notice however

is that ΠA entails bothp and¬p, while the Kripke model entails no analogous formula.

This leads to the following as a potential alternative reading of the epistemic operators
and :

• f - the agent believes f to be possible.

• f - the agent believes that f is true

Under this interpretation, the epistemic operator  is analogous to the modal operator

, coupled with the S5 axiom system. If we introduce a means of representing external
information, by for example marking which of the answer sets comprising a world view

corresponds to the true state of the domain, it becomes clear that it is possible to introduce

a third operator corresponding to knowledge under the interpretation of knowledge as true
belief1. ⋄

p, q

!�

¬p, q

!�

A A
A

Figure 6.1: A Kripke model satisfying the S5 axiom system corresponding to the
answer sets/world view of ΠA.

1In fact, it is even possible to model a view of knowledge as justified true belief if we use the semantics of
epistemic specifications as an inherent justification.
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In addition of having a potential theoretical benefit, the language of epistemic specifica-
tions may also have a programmatic benefit when it comes to automating various reasoning
tasks. Recent work building off of [29] has seen the development of preliminary solvers
for programs written in this language, and it may be the case that the programs described
in Chapter 5 may be simplified considerably by shifting to an alternative formalism. As
one example of a potential simplification, it is quite possible that the modules described in
Chapter 5.1.2 through 5.1.2.2 may be eliminated entirely given that the language of epistemic
specifications already contains within its semantics analogous constructs to those which are
emulated in pure answer-set prolog.

6.1.2 Probability as Degree of Belief

Another area of new research is in the integration of probability into our understanding
of belief. Continuing the discussion from Example 6.1, we can notice that all of the world
views of ΠA, and hence all of the points of the corresponding Kripke model are held as
equally possible (i.e., all possible worlds are equally likely). What if this is not the case?
In other words, how can we incorporate an understanding of probability as a degree (or

measure of the degree) of belief into our formalism and representations? Work done in
[18] extended the foundations of answer-set prolog to include probabilistic information,
and a similar extension of the language of epistemic specifications seems to be a natural
investigation to pursue. In conjunction with this, an extension of the Kripke semantics of
modal logic by probability seems to also be a worthwhile endeavor. Example 6.2 presents
some basic thoughts on this question.

Example 6.2 (Incorporating Probability as Degree of Belief). Recall the logic program, ΠA,

127



presented in Example 6.1:

p ∨ ¬p← q.

q.

In this program, given q, agent A believes that either p or its negation are equally likely.

What if this is not the case? What if our agent knows the following:

P (p ∣ q) = 0.75

P (¬p ∣ q) = 0.25

Here we have conditional probabilites for both p and its negation given that q is true. This

information would then weigh the agents beliefs, inclining him to believe in p over ¬p. If we

use a similar interpretation to that in Example 6.1, we could easily envision an extension of

the Kripke semantics to give us a probabilistic Kripke model as shown in Figure 6.2, along

with a new definition of the entailment relation which incorporates this notion of weight or
degree of certainty. ⋄

p, q

!�

¬p, q

!�

A, 0.75 A, 0.25

A, 0.25

A, 0.75

Figure 6.2: A probabilistic Kripke model satisfying the S5 axiom system correspond-
ing to the answer sets/world view of Example 6.2.
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6.2 Optimizing Multi-Agent Reasoning

The final area of research that I intend to pursue focuses on program optimization and
answer-set solving algorithms in order to make automated reasoning in the style presented in
this dissertation more efficient. In general, results from [1] states that for the logic of public
announcements, the satisfiability and model checking problems are respectively PSPACE-
complete and in P , while for dynamic epistemic logic with event models (which are used
to define the semantics of m+), the model checking problem is PSPACE-complete while
the satisfiability problem is NEXPTIME-complete. This seems to suggest that in general,
an approximation semantics similar to the approach taken in [40] seems to be a promising
avenue of optimization.

Outside of an approxmation semantics, when it comes to automating planning, one
potential source of inefficiency is in the fact that the ground instance of the program becomes
very large due to several factors:

• The recursive (even in limited form) definition of modal formulae in Chapter 5.1.2.
The more agents and fluents in the domain, the larger the collection of modal formulae
that make up the ground instance of the program.

• Together with the number of modal formulae of interest in the domain, the necessary
definiton of the corresponding entailment relation from Chapter 5.1.2.2 also greatly
expands the ground instance of the program within a single time step.

• When attempting to do temporal projection or planning, the transition function, which
depends on a complex definition of a state from Chapter 5.1.2.1, individual update
models for action occurrences in Chapter 5.2.1, and the update execution operator
in Chapter 5.2.2, compounds issue even more, making automated planning for even
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small domains difficult.

Each of the issues presented above has to do with the size of the resulting ground program.
As part of my future research, I hope to investigate two areas to work around this. The first,
is in automatic program optimization through program rewriting, and the second is in solvers
which do not require a priori grounding.

With program rewriting it may be possible to discoverways of transforming or simplifying
the abstract syntax tree of the program while preserving equivalence but reducing the size
of the resulting ground program. Recent work has been done in this area [20, 28] and bears
further investigation. In addition, the kinds of programs used in this work may serve as
benchmark test cases. Another avenue of research has been partly touched on by the use of
the Prolog programming language in [9], but may be extended into solving through multiple
logic programming paradigms or in moving to a new approach for answer-set solving in
general. Current answer set solvers such as clingo and dlv operate on a ground instance of
the input program, which as is the case with the programs presented in Chapter 5 grow to be
very large, making computation difficult. It may be possible that an alternative algorithm
which does not require an a priori grounding could reduce the computational cost associated
with these programs.
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THEOREMS AND PROOFS
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A.1 Proofs for Theorems in Chapter 3

Theorem 3.1. Let  be a multi-agent domain with the signature, Σ = (, ,),  be a

consistent and definite initial state description, and Δ be an action description of m+.
There exists a unique Kripke world, (M,�), where |M.W | ≤ 2| |, which satisfies the S5

axioms, such that every Kripke model of (,Δ) is equivalent to (M,�).

Proof. Let us consider two arbitrary S5-states (M0, !0) and (M1, !1) satisfying . From
Lemma A.6 we can assume that bothM0 andM1 are in reduced form; this guarantees that
the number of points inM0 andM1 is bound by the number of interpretations which is 2| |.
Furthermore, we can assume thatM0 andM1 have the same points (since each interpretation
inM0 appears inM1 and vice versa, and no interpretation can be associated with two distinct
points as the states are in reduced form).

For the sake of simplicity, let us assume thatM0.W = M1.W ; let us also assume by
contradiction, that there are two points �, � ∈ M0.W and (�, �) ∈ M0.R� and (�, �) ∉
M1.R�. Let ' = ¬state(�). Because of the construction, we can see that (M1, �) ⊧ '. Since
the two states are initial states for , this means that they are models of one of the following
formulae: �' or �' ∨ �¬'. On the other hand, since (�, �) ∈M0.R�, it is easy to
see that (M0, �) ⊧̸ �' and (M0, �) ⊧̸ ¬'. This contradicts the fact that both (M0, !0) and
(M1, !1) are models of .
Theorem 3.2. Let Δ be a consistent action description of m+, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a sensing action that is executable in �. Let

(M ′, !′) ∈ � ⊗ Us(�, a). It holds that:

• ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ f (a,�)� iff (M,!) ⊧ � where � ∈

{f,¬f}
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• ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f )
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

Proof. The proof is broken up into three parts, one for each assertion made by the theorem.

1. ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ f (a,�)� iff (M,!) ⊧ � where � ∈
{f,¬f}

a) Left-to-right: (M ′, !′) ⊧ f (a,�)� ⇐⇒ (M,!) ⊧ � where � ∈ {f,¬f}
i. Let G = f (a, �), and (M ′, !′) ⊧ f (a,�)�. It immediately follows that
(M ′, �) ⊧ � for every � that is G-reachable from !′.

ii. From Definitions (3.12) and (3.15), this may only be true if and only if for
every � such that � is G-reachable from !, (M, �) ⊧ �.

iii. It necessarily follows that (M,!) ⊧ �, and therefore the implication holds.
b) Right-to-left: (M,!) ⊧ � ⇐⇒ (M ′, !′) ⊧ f (a,�)� where � ∈ {f,¬f}

i. Let G = f (a, �) and (M,!) ⊧ �.
ii. From Definitions (3.12) and (3.15), it must be the case that (M ′, !′) ⊧ �.

Furthermore, it also follows that for every � that is G-reachable from !′ in
M ′, (M ′, tau) ⊧ �.

iii. Hence, (M ′, !′) ⊧ f (a,�)�, and the implication holds.

2. ∀f ∈ {f ∣ [a determines f ] ∈ Δ}, (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f )
a) We are given that (M ′, !′) ∈ � ⊗ Us(�, a). By definition, the following must

hold (via Definitions (3.12) and (3.15):
i. !′ has the form (!, "p) or (!, "n), depending on the interpreted value of f .
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ii. The only points reachable from !′ by agents in p(a, �), have the form (�, "p),
or (�, "n), where � and � are points inM where �.�(f ) = ⊤ and �.�(f ) = ⊥.

iii. (!, "p) is reachable from itself by agents in p(a, �) or f (a, �). Similarly for
(!, "n).

iv. Lastly, (!, "n) is reachable from (!, "p) by agents in p(a, �) and vice versa.
b) Let G1 = p(a, �) and G2 = f (a, �).
c) A consequence of (2(a)ii) and (2(a)iii) is that (!, "p) and (!, "n) areG1-reachable

from (!, "p).
d) Every point that is G2-reachable from (!, "p) must have the form (�, "p) where �

is some point inM reachable from ! by agents in G2. Similarly, Every point that
is G2-reachable from (!, "n) must have the form (�, "n) where � is some point in
M reachable from ! by agents in G2.

e) From (2c), (2d), and (A.2), every point that is G2-reachable from !′ must either
satisfy f or ¬f , and hence satisfy (f (a,�)f ∨ f (a,�)¬f ).

f) From (2e), (2c) and (A.2) it must be the case that every point that isG1-reachable
from !′ satisfies f (a,�)¬f ), and hence it must be the case that (M ′, !′) ⊧

p(a,�)(f (a,�)f ∨ f (a,�)¬f ).
3. ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

a) Left-to-right: (M ′, !′) ⊧ �� ⇐⇒ (M,!) ⊧ ��

i. Let� ∈ o(a, �), and (M ′, !′) ⊧ ��. It immediately follows that (M ′, �) ⊧ �

for every point � that is reachable from !′ inM ′ by agent �’s accessibility
relation.
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ii. From Definitions (3.12) and (3.15), it must be the case that:
A. !′ = (!, "i) where ! is the reference point inM .
B. Every point � reachable from !′ must have the form (!, "i) where ! is a

point reachable from the reference point inM by agent �’s accessibility
relation.

iii. Consequently, every point ! reachable from the reference point in inM by
agent �’s accessibility relation must satisfy �.

iv. Hence by definition, (M,!) ⊧ ��.
b) Right-to-left: (M,!) ⊧ �� ⇐⇒ (M ′, !′) ⊧ ��

i. Let � ∈ o(a, �), and (M,!) ⊧ ��. It follows by definition that every point
� reachable from ! inM by agent �’s accessibility relation must satisfy �.

ii. Now consider any point � in M ′ that is reachable from !′ by agent �’s
accessibility relation. From Definitions (3.12) and (3.15), � must have
the form (�, "i) for some corresponding point � inM . Furthermore, � is
reachable from the reference point inM by agent �’s accessibility relation.

iii. Furthermore, Definitions (3.12) and (3.15) tell us that � must satisfy � as
well.

iv. As a consequence, it must be the case that every point � reachable from !′

inM ′ by agent �’s accessibility relation must satisfy �.
v. Hence, by definition of the entailment relation,M ′, !′) ⊧ ��.

Theorem 3.3. LetΔ be a consistent action description ofm+, � = (M,!) be a state in the

transition diagram defined byΔ, and a be an announcement action that is executable in � that
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is governed by the announcement axiom [a announces '] ∈ Δ. Let (M ′, !′) ∈ �⊗Ua(�, a).

It holds that:

• (M ′, !′) ⊧ f (a,�)'
• (M ′, !′) ⊧ p(a,�)(f (a,�)' ∨ f (a,�)¬')
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

Proof. The proof is broken up into three parts, one for each assertion made by the theorem.

1. (M ′, !′) ⊧ f (a,�)'
a) We are given that (M ′, !′) ∈ � ⊗ Ua(�, a), and that a is executable in �, and

is governed by an announcement axiom of the form [a announces ']. From
definitions (3.13) and (3.15), the following must hold:
i. � ⊧ '
ii. (M ′, !′) ⊧ '

iii. Every point inM ′ that is reachable from !′) by members of f (a, �) must
satisfy '.

b) Consequently, by definition of the entailment relation and (A.2), (M ′, !′) ⊧

f (a,�)'.
2. (M ′, !′) ⊧ p(a,�)(f (a,�)' ∨ f (a,�)¬')

a) We are given that (M ′, !′) ∈ � ⊗ Ua(�, a). By definition, the following must
hold (via Definitions (3.13) and (3.15):
i. !′ has the form (!, "p) or (!, "n), depending on the interpreted value of '.
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ii. The only points reachable from !′ by agents in p(a, �), have the form (�, "p),
or (�, "n), where � and � are points inM where �.�(') = ⊤ and �.�(') = ⊥.

iii. (!, "p) is reachable from itself by agents in p(a, �) or f (a, �). Similarly for
(!, "n).

iv. Lastly, (!, "n) is reachable from (!, "p) by agents in p(a, �) and vice versa.
b) Let G1 = p(a, �) and G2 = f (a, �).
c) A consequence of (2(a)ii) and (2(a)iii) is that (!, "p) and (!, "n) areG1-reachable

from (!, "p).
d) Every point that is G2-reachable from (!, "p) must have the form (�, "p) where �

is some point inM reachable from ! by agents in G2. Similarly, Every point that
is G2-reachable from (!, "n) must have the form (�, "n) where � is some point in
M reachable from ! by agents in G2.

e) From (2c), (2d), and (A.2), every point that is G2-reachable from !′ must either
satisfy f or ¬f , and hence satisfy (f (a,�)f ∨ f (a,�)¬f ).

f) From (2e), (2c) and (A.2) it must be the case that every point that isG1-reachable
from !′ satisfies f (a,�)¬f ), and hence it must be the case that (M ′, !′) ⊧

p(a,�)(f (a,�)f ∨ f (a,�)¬f ).
3. ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

a) Left-to-right: (M ′, !′) ⊧ �� ⇐⇒ (M,!) ⊧ ��

i. Let� ∈ o(a, �), and (M ′, !′) ⊧ ��. It immediately follows that (M ′, �) ⊧ �

for every point � that is reachable from !′ inM ′ by agent �’s accessibility
relation.
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ii. From Definitions (3.13) and (3.15), it must be the case that:
A. !′ = (!, "i) where ! is the reference point inM .
B. Every point � reachable from !′ must have the form (!, "i) where ! is a

point reachable from the reference point inM by agent �’s accessibility
relation.

iii. Consequently, every point ! reachable from the reference point in inM by
agent �’s accessibility relation must satisfy �.

iv. Hence by definition, (M,!) ⊧ ��.
b) Right-to-left: (M,!) ⊧ �� ⇐⇒ (M ′, !′) ⊧ ��

i. Let � ∈ o(a, �), and (M,!) ⊧ ��. It follows by definition that every point
� reachable from ! inM by agent �’s accessibility relation must satisfy �.

ii. Now consider any point � in M ′ that is reachable from !′ by agent �’s
accessibility relation. From Definitions (3.13) and (3.15), � must have
the form (�, "i) for some corresponding point � inM . Furthermore, � is
reachable from the reference point inM by agent �’s accessibility relation.

iii. Furthermore, Definitions (3.13) and (3.15) tell us that � must satisfy � as
well.

iv. As a consequence, it must be the case that every point � reachable from !′

inM ′ by agent �’s accessibility relation must satisfy �.
v. Hence, by definition of the entailment relation,M ′, !′) ⊧ ��.

Theorem 3.4. Let Δ be a consistent action description of m+, � = (M,!) be a state in

the transition diagram defined by Δ, and a be an ontic action that is executable in �. Let

(M ′, !′) ∈ � ⊗ Us(�, a). It holds that:
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• ∀� ∈ f (a, �), dynamic causal law [a causes � if �] ∈ Δ, and !1, !2 ∈M.W :

– ("p, !1) ⊧ � if (M,!1) ⊧ �

– (!1, !2) ∈M.R� iff (("p, !1), ("p, !2)) ∈M ′.R�

• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

Proof. The proof is broken up into parts, one for each assertion made by the theorem:

1. ∀� ∈ f (a, �), dynamic causal law [a causes � if �] ∈ Δ, and !1, !2 ∈M.W :

• ("p, !1) ⊧ � if (M,!1) ⊧ �

a) We are given that ("p, !1) is a point in � ⊗ Uo(�, a).
b) From (1a) and Definitions (3.14) and (3.15), ("p, !1) ⊧ � may only be true

if a substitution of the form ¬�→ � was applied as part of the application
of the⊗ operator.

c) (1b) may only hold if (M,!1) ⊧ �

d) Hence, ("p, !1) ⊧ � if (M,!1) ⊧ �

• (!1, !2) ∈M.R� iff (("p, !1), ("p, !2)) ∈M ′.R�

– This assertion follows immediately from Definitions (3.14) and (3.15).

2. ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� iff (M,!) ⊧ ��

a) Left-to-right: (M ′, !′) ⊧ �� ⇐⇒ (M,!) ⊧ ��

i. Let� ∈ o(a, �), and (M ′, !′) ⊧ ��. It immediately follows that (M ′, �) ⊧ �

for every point � that is reachable from !′ inM ′ by agent �’s accessibility
relation.

ii. From Definitions (3.14) and (3.15), it must be the case that:
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A. !′ = (!, "i) where ! is the reference point inM .
B. Every point � reachable from !′ must have the form (!, "i) where ! is a

point reachable from the reference point inM by agent �’s accessibility
relation.

iii. Consequently, every point ! reachable from the reference point in inM by
agent �’s accessibility relation must satisfy �.

iv. Hence by definition, (M,!) ⊧ ��.
b) Right-to-left: (M,!) ⊧ �� ⇐⇒ (M ′, !′) ⊧ ��

i. Let � ∈ o(a, �), and (M,!) ⊧ ��. It follows by definition that every point
� reachable from ! inM by agent �’s accessibility relation must satisfy �.

ii. Now consider any point � in M ′ that is reachable from !′ by agent �’s
accessibility relation. From Definitions (3.14) and (3.15), � must have
the form (�, "i) for some corresponding point � inM . Furthermore, � is
reachable from the reference point inM by agent �’s accessibility relation.

iii. Furthermore, Definitions (3.14) and (3.15) tell us that � must satisfy � as
well.

iv. As a consequence, it must be the case that every point � reachable from !′

inM ′ by agent �’s accessibility relation must satisfy �.
v. Hence, by definition of the entailment relation,M ′, !′) ⊧ ��.
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A.2 Proofs for Theorems in Chapter 4

Theorem 4.1. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be an ontic action that is executable in �. Let

(M ′, !′) ∈ ΦΔ(�, a). It holds that:

• ∀� ∈ f (a, �), and dynamic causal law [a causes � if �] ∈ Δ, if (M,!) ⊧ ��, then

(M ′, !′) ⊧ ��

• ∀� ∈ f (a, �), and state constraint [� if �] ∈ Δ, (M,!) ⊧ �(� ⇐⇒ �)

• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

Proof. The proof is broken up into parts, one for each assertion made by the theorem:

1. ∀� ∈ f (a, �), and dynamic causal law [a causes � if �] ∈ Δ, if (M,!) ⊧ ��, then
(M ′, !′) ⊧ ��.

a) We are given that � ∈ f (a, �) and that (M,!) ⊧ ��.
b) From (1a) and Definition 2.12, it must be the case that every point reachable

from ! inM according to the accessibility relation for agent � satisfies �.
c) From (1b) and Definitions 4.12 and 4.9, it must be the case that from every point

in the pointed frame (F , (!, "p)) reachable from (!, "p), must satisfy �.
d) From (1c), and Definitions 4.15 and 4.16, it must be the case that every point

reachable from !′ inM ′ by agent �’s accessibility relation satisfies �.
e) Consequently, from (1d) and Definition 2.12, (M ′, !′) ⊧ ��.
f) Hence, if (M,!) ⊧ ��, then (M ′, !′) ⊧ ��.

2. ∀� ∈ f (a, �), and state constraint [� if �] ∈ Δ, (M,!) ⊧ �(� ⇐⇒ �).
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a) We are given that � = (M,!) is a state in the transition diagram defined by Δ.
b) Suppose that (M,!) ⊧ �¬�. In this case, the implication �→ � is vacuously

true.
c) Suppose now that (M,!) ⊧ ��.
d) From (2c) and Definition 2.12, it must be the case that every point reachable

from ! inM according to agent �’s accessibility relation satisfies �.
e) From (2a) and the definition of a state in Δ, it must be the case that every point

ofM correspond to complete consistent sets of fluent literals closed under the
state constraints of Δ.

f) As a consequence of (2e), it must be the case every point reachable from ! in
M according to agent �’s accessibility relation satisfies �.

g) Hence, from (2f), the implication �→ � is satisfied, and consequently by virtue
of Definition 2.12, it must be the case that (M,!) ⊧ �(�→ �).

3. ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��.

a) Left-to-right: (M ′, !′) ⊧ �� ⇐⇒ (M,!) ⊧ ��.
i. Let � ∈ o(a, �), and (M ′, !′) ⊧ ��. It immediately follows that (M ′, �) ⊧ �

for every point � that is reachable from !′ inM ′ by agent �’s accessibility
relation.

ii. From (3(a)i) and Definition 4.18 it must be the case that every such point �
is obtained by the application of the scenario expansion of a point (�, "i),
where � is a point reachable from! inM according to agent �’s accessibility
relation.

iii. From Definitions 4.15 and 4.14, it is clear that the interpration functions
of every point � match those of their corresponding points � inM . Con-
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sequently, every point reachable from ! in M by agent �’s accessibility
relation must satisfy �.

iv. Hence, from (3(a)iii) and Definition 2.12, it must be the case that (M,!) ⊧

��.
b) Right-to-left: (M,!) ⊧ �� ⇐⇒ (M ′, !′) ⊧ ��.

i. Let � ∈ o(a, �), and (M,!) ⊧ ��. It follows by definition that every point
� reachable from ! inM by agent �’s accessibility relation must satisfy �.

ii. Consequently, by Definitions 4.14, 4.15 and 4.18, it must be the case that
every point reachable from!′ inM ′ satisfy �, by virtue of those points being
derived from the scenario expansion of points of the form (�, "i), where � is
a point reachable from ! inM according to agent �’s accessibility relation.

iii. Hence from (3(b)ii) it must be the case by Definition 2.12, that (M ′, !′) ⊧

��.

Theorem 4.2. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a sensing action that is executable in � and

described by the sensing axiom [a determines f ] ∈ Δ. Let (M ′, !′) ∈ ΦΔ(�, a). It holds

that:

• (M ′, !′) ⊧ f (a,�)� if and only if (M,!) ⊧ � where � ∈ {f,¬f}

• (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f )
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

Proof. The proof is broken up into parts, one for each assertion made by the theorem:
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1. (M ′, !′) ⊧ f (a,�)� if and only if (M,!) ⊧ � where � ∈ {f,¬f}:

a) We are given that (M ′, !′) ⊧ f (a,�)�.
b) It immediately follows that for every point � reachable from !′ inM ′ by agent

�’s accessibility relation must satisfy �.
c) From (1b) and Definitions 4.10, 4.12, and 4.18, it must be the case that every such

point � was derived by the scenario expansion of some point fromEu(�, s(�, a)).

d) From the same set of definitions as in (1c), we know that a point may only belong
to Eu(�, s(�, a)), if it has the form (�, "p) or (�, "n) depending on the value of
�.

e) Via Definition 4.12, points of the form (�, "p)may only belong to Eu(�, s(�, a))
if theM.�(�)(�) = ⊤, and similarly for the negative case. .

f) Consequently, it must be the case (M,!) ⊧ �.

2. (M ′, !′) ⊧ p(a,�)(f (a,�)f ∨ f (a,�)¬f ):
a) We are given via Definition 4.18 that (M ′, !′) belongs toOuΔ(�,Eu(�, s(�, a))).

Consequently, the following must be true:
i. !′ has the form (!, "p) or (!, "n), depending on the interpreted value of f .
ii. The only points reachable from !′ by agents in p(a, �), were obtained by

scenario expansions of those having the form (�, "p), or (�, "n), where � and
� are points inM where �.�(f ) = ⊤ and �.�(f ) = ⊥.

iii. Those obtained from (!, "p) are reachable from themselves by agents in
p(a, �) or f (a, �). Similarly for those corresponding to (!, "n).
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iv. Lastly, those obtained by expanding (!, "n) are reachable from those corre-
sponding to (!, "p) by agents in p(a, �) and vice versa.

b) Let G1 = p(a, �) and G2 = f (a, �).
c) A consequence of (2(a)ii) and (2(a)iii) is that (!, "p) and (!, "n) areG1-reachable

from (!, "p).
d) Every point that is G2-reachable from (!, "p) must have the form (�, "p) where �

is some point inM reachable from ! by agents in G2. Similarly, Every point that
is G2-reachable from (!, "n) must have the form (�, "n) where � is some point in
M reachable from ! by agents in G2.

e) From (2c), (2d), and (A.2), every point that is G2-reachable from !′ must either
satisfy f or ¬f , and hence satisfy (f (a,�)f ∨ f (a,�)¬f ).

f) From (2e), (2c) and (A.2) it must be the case that every point that isG1-reachable
from !′ satisfies f (a,�)¬f ), and hence it must be the case that (M ′, !′) ⊧

p(a,�)(f (a,�)f ∨ f (a,�)¬f ).
3. ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��:

a) The proof for this asssertion directly mirrors that of (3) for Theorem 4.1.

Theorem 4.3. Let Δ be a consistent action description of m, � = (M,!) be a state in

the transition diagram defined by Δ, and a be a communication action that is executable in

� and described by the sensing axiom [a communicates '] ∈ Δ. Let (M ′, !′) ∈ ΦΔ(�, a).

It holds that:

• (M ′, !′) ⊧ f (a,�)'
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• (M ′, !′) ⊧ p(a,�)(f (a,�)' ∨ f (a,�)¬')
• ∀� ∈ o(a, �), ∀�, (M ′, !′) ⊧ �� if and only if (M,!) ⊧ ��

Proof. The proof of this theorem directly mirrors that of the proof for Theorem 4.2, changing
only the references from the sensing model to the communication model.

A.3 Proofs for Theorems in Chapter 5

Theorem 5.1. Let a1, a2, and a3 be defined as follows:

a1 = declare(mA ∨ mB ∨ mC)

a2 = declare(¬�m� ∧ ¬�¬m�)

a3 = declare(¬�m� ∧ ¬�¬m�)

Πmc has a single answer set corresponding to the solution of the the ClassicalMuddy Children

Problem forN = K = 3 described by the trajectory (�0, a1, �1), (�1, a2, �2), (�2, a3, �3).

Before presenting the proof, we introduce some preliminary notation. As detailed in
Chapter 5, Πmc is comprised of several components detailed in Sections 5.1.1 through 5.1.5.
Rather than referring to these components by the names of their program texts, we will use
the following notation:

• ΠΣ - denotes the logic program presented in Listing 5.1 which defines the domain
signature.

• Π' - denotes the logic program presented in Listings 5.2 and 5.3 which defines the set
of modal formulae of interest used in the Classical Muddy Children domain.

• Π⊧ - denotes the logic program presented in Listings 5.4 and 5.5 which defines the
entailment relation between Kripke worlds and the formulae defined in Π'.
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• Π�0 - denotes the logic program presented in Listings 5.6 and 5.7 which defines the
initial state of the Classical Muddy Children domain.

• Πa - denotes the logic program presented in Listing 5.9 which defines the effects of
the actions declare.

• ΠH - denotes the logic program presented in Listing 5.10 which defines the history:

a1 = declare(mA ∨ mB ∨ mC)

a2 = declare(¬�m� ∧ ¬�¬m�)

a3 = declare(¬�m� ∧ ¬�¬m�)

⟨occurs(a1, 0), occurs(a2, 1), occurs(a3, 2)⟩.

Lemma A.1 (Correct Generation of the Initial State). Let Π0 be the union of ΠΣ, Π', Π⊧,

and Π�0 . Π0 has a single answer set which corresponds to the initial state of the Classical

Muddy Children Problem as show in Figure 3.5.

Proof. This lemma follows from two claims:

1. The answer set ofΠ0 correctly defines the points of the Kripke world defining the initial
state of the Classicaly Muddy Children Problem and their respective interpretation
functions.

2. The accessibility relations of the Kripke world defined by the answer set of Π0 corre-
spond to those shown in Figure 3.5, and consequently entail the formulae specified in
Π�0 .

It is clear from Listing 5.6 that Π�0 , and consequently Π0 must satisfy (1), as both the points
of the resultant Kripke world and their interpretation functions are given as facts, and hence
must belong to the answer set of Π0.
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Regarding (2), we begin by assuming that the moduleΠ⊧ correctly captures the entailment
relation for those modal formulae specified in Π', as specified by Definition 2.12. Under
this assumption, due to the presence of the constraint:

← initially(') ∧ not holds(', 0).

it must be case that the Kripke world defined by the answer set of Π0 entails all of the
formulae outlined in Π�0 by the collection of facts of the form initially('). Furthermore, we
know that the accessibility relations must be reflexive, symmetric, and transitive, by virtue
of the rules in Listing 5.6 defining the relation k_reachable in Π�0 .

What remains for us to show is that Π⊧ correctly captures the entailment relation for
those modal formulae specified in Π'. This is accomplished in two steps:

3. First, we note that the definition of the relation holds given in Π�0 is essentially a
verbatim transciption of the definition of the entailment relation between a Kripke
world and an arbitrary modal formula as given in [19]. Of particular importance is
that we note that atoms of the form holds(', T ) may only belong to an answer of the
program if ' is entailed by the Kripke world defined by that answer set. This follows
immediately from the definition of satisfaction.

4. We next note that the rules which comprise Π⊧, correspond to transcriptions of each
component of Definition 2.12, with the exception of those rules defining the entailment
relation pertaining to formulae containing the modal operator . Those particular rules
themselves are answer-set prolog transcriptions of Lemma A.2. It is clear from the defi-
nition of satisfaction that itmust be the case that atoms of the form entailed_by(', P , T )

may only belong to the answer set of Π�0 if the entailment relation is satisfied.

It necessarily follows from (1) through (4) that the answer set of Π0 must correspond to the
Kripke world corresponding to the initial state of the Classical Muddy Children Domain as
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shown in Figure 3.5.

Proof. It immediately follows from Lemma A.1 that the for step 0, the answer set of Πmc
correctly defines the Kripke world for the initial state of the Classical Muddy Children
Domain. What remains is to show that at subsequent step of the trajectory, the Kripke
world defined by the atoms of the form point(P , T ) and k_reachable(P1, P2, A, T ) define the
correct matches those of Figures 1.2 through 1.4 (modulo the differences in notation). To do
this, we turn our attention towards Πa and ΠH .

Let us consider the first step of the trajectory: (�0, a1, �1). We must first show that the
Kripke world defining �1 belongs to the answer set ofΠmc . This is an immediate consequence
of the satisfaction relation and the rules of:

Πa ∪ {occurs(declare(declare(mA ∨ mB ∨ mC), 0)}

From the satisfaction relation it is clear that the symbol w8 does not carry over as a point
from step 0 to step 1. Similarly for those accessibility relations pertaining to it. Had it carried
over, there would be a contradiction due to the introduction of the fact ¬point(w8, 1) by the
satisfaction of the rules of Πa. Similarly for the remaining steps of the trajectory.

Theorem 5.2. LetΔ be an action description ofm+, � = (M,!) be a state of the transition

diagram defined by Δ, and a be an action. The successor state(s) obtained by performing

the action a in the state � are given as part of the answer-set(s) of the logic program Πm+
given below:

ΠΔ ∪ Π� ∪ Π⊗ ∪ Πℎ ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Πontic ontic action

Πsns sensing action

Πann announcement action

(5.1)

where ΠΔ = ΠΣ ∪ Π ∪ Πdel.
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Proof. We begin by assuming that Πℎ describes the occurence of a single elementary action
fromΠ. Let �′ denote a successor state defined by the answer-set(s) ofΠm+, and letU (Πℎ)
be the update model corresponding to the action occurrence defined byΠℎ∪Πontic∪Πsns∪Πann.

The proof is based on showing the following:

1. A point !′ belongs to the Kripke world which defines �′ if and only if !′ belongs to
(M,!)⊗U (Πℎ).

2. The pair (!′1, !′2) belongs to the accessibility relation for an agent � in �′ if and only
if that pair belongs to the accessibility relation for � in (M,!)⊗U (Πℎ).

3. A fluent f is true in the interpretation function of !′ if and only if it is true in the
interpretation function of (M,!)⊗U (Πℎ).

We examine each of these points in turn:

1. A point !′ belongs to the Kripke world which defines �′ if and only if !′ belongs to
(M,!)⊗U (Πℎ).

a) Left-to-right (by contradiction): A point !′ belongs to the Kripke world which
defines �′ if !′ belongs to (M,!)⊗U (Πℎ).
i. Let us suppose that !′ belongs to the Kripke world which defines �′, but

does not belong to (M,!)⊗U (Πℎ).
ii. !′ may only belong to the Kripke world which defines �′, if it belongs to

the answer-set of Πm+.
iii. 1(a)ii may only be true however if an atom of the form point(P , T ) belongs

to the answer-set in question, where P = !′ and T is the step of the diagram
at which �′ is defined.
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iv. 1(a)iii may only be true if the following rule from Listing 5.17:

point(w(P ,E), T )← point(P , T − 1), event(E, T − 1),

pre(Φ, E, T − 1), entailed_by(Φ, P , T − 1),

action_occurs(T − 1).

is satisfied by Πm+.
v. However, from Definitions 2.17 and 2.21, the rule in 1(a)iv is only satisfied,

if !′ belongs to (M,!) ⊗ U (Πℎ). Hence, we have a contradiction, and
therefore it must be the case that if !′ belongs to the Kripke world which
defines �′, it must also belong to (M,!)⊗U (Πℎ).

b) Right-to-left (by contradiction): !′ belongs to (M,!)⊗U (Πℎ) if !′ belongs to
the Kripke world which defines �′.
i. Let us suppose that !′ belongs to (M,!)⊗U (Πℎ) but does not belong to

to the Kripke world which defines �′.
ii. By Definition 2.17, this may only be true if: !′ has the form (!i, "i)where!i

is a point inM and "i is an event in U (Πℎ), and !i satisfies the precondition
of "i.

iii. Given 1(b)ii however, it must be the case that the body of the rule from
1(a)iv must be satisfied. Hence, an atom of the form point(P , T ) belongs to
the answer-set of Πm+.

iv. From 1(b)iii however it must be the case that !′ belongs to the Kripke world
which defines �′, which contradicts our assumption. Consequently it must
be the case that if !′ belongs to (M,!) ⊗ U (Πℎ) then !′ belongs to the
Kripke world which defines �′.

c) From 1a and 1b it must be the case that (1) holds.
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2. The proof for 2 follows the same pattern as for 1, with the rule whose head is
k_reachable(w(P1, E1), w(P2, E2), AG, T ) in Listing 5.17.

3. Finally, as with the prior two points, the proof for 3 follows the same argument, but
using the remaining rules of Listing 5.17.

A.4 General Lemmas and Theorems

In this section we present the general lemmas and theorems that play a role in the proofs
of the theorems presented in this dissertation, and are of interest in and of themselves as
well.

Lemma A.2 (G-reachability and Entailment). LetM be a Kripke model over a multi-agent

domain .

• (M,!) ⊧ k
 ' if and only if (M,!) ⊧ ' for all � that are 
-reachable from ! in k

steps.

• (M,!) ⊧ 
' if and only if (M,!) ⊧ ' for all � that are 
-reachable from !.

Proof. The proof of this lemma is given in [19] and we refer the reader to that text.

The following lemmas and their respective proofs first appeared in [14] and are presented
below in full:

Lemma A.3. Every S5-state (M,!) is equivalent to a S5-state (M ′, !) such that for every

point � ∈M ′.W , we have that � is reachable from !.

156



By Construction. The result derives from the fact that, if there is a world � which is not
reachable from!, then for each formula'we have that (M,!) ⊧ ' if and only if (M ′, �) ⊧ ',
whereM ′ is defined as follows:

1. M ′.W =M.W ⧵ {�} (i.e., we remove the unreachable world �);

2. M ′.�(�) =M.�(�) for every � ∈M ′.W (i.e., all interpretations associated with the
remaining points are the same)

3. M ′.R� = M.R� ⧵ {(�, �) ∣ (�, �) ∈ M.R�, � ∉ M ′.W ∨ � ∉ M ′.W }, (i.e., we
maintain the same accessibility relations except for removing all cases related to the
world �)

Lemma A.4. Let (M,!) be a S5-state such that every point inM.W is reachable from !,

and let ' be a formula. (M,!) ⊧ ' if and only ifM.�(!) ⊧ ' for every point inM.W .

Proof. Because we know that (M,!) is an S5-state, we know that all of the accessibility
relations must be reflexive, transitive, and symmetric. Furthermore, from the definition of the
entailment relation for the operator , we know that (M,!) ⊧ ' implies that (M,!) ⊧ '

in every point � reachable from !, which may only be true ifM.�(�) ⊧ '. The converse is
obvious from the fact that each state is reachable from !.

Lemma A.5. Let (M,!) be a S5-state such that every point inM.W is reachable from !.

Furthermore, let (M̃, !̃) be the reduced state of (M,!). It holds that:

1. (M,!) ⊧ ' iff (M̃!̃) ⊧ '

2. (M,!) ⊧ ' iff (M̃!̃) ⊧ '
3. (M,!) ⊧ �' iff (M̃!̃) ⊧ �'
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4. (M,!) ⊧ �' ∨ �¬' iff (M̃, !̃) ⊧ �' ∨ �¬'

5. (M,!) ⊧ ¬�' ∨ ¬�¬' iff (M̃, !̃) ⊧ ¬�' ∨ ¬�¬'

Proof. This lemma is an immediate consequence of Lemma A.4 and the construction of
(M̃, !̃).

Lemma A.6. Let  be a set of initial state axioms of a definite action theory. Every S5-state
satisfying  is equivalent to an S5-state (M ′, !′) such that |M ′.W | ≤ 2| |.

Proof. By Lemma A.3 we can assume that every point in M is reachable from !. Fur-
thermore, Lemma A.5 shows that (M̃, !̃) is also a S5-state satisfying . It is clear that
||M̃.W || ≤ 2| | as each interpretation function may be modeled as a subset of  and ||M̃.W ||
is bound by the number of of distinct interpretations. We will now show that the reduced
state (M̃, !̃) of (M,!) satisfies the lemma. To complete the proof, we must show that for
any arbitrary formula ' and point ! ∈M.W , the following holds:

(M,!) ⊧ ' iff (M̃, !̃) ⊧ ' (A.1)

This will be done by induction on the depth of ':

1. Suppose that depth(') = 0. In this case, ' is a fluent formula and (A.1) trivially holds
from the construction of (M̃, !̃).

2. Suppose that for any ' where depth(') ≤ k, (A.1) holds.

3. Consider a formula ' where depth(') = k + 1. Here we have four distinct case:

a) ' = � . In this case, (M,!) ⊧ ' iff for every point, �, reachable from ! by
agent �’s accessibility relation, (M, �) ⊧  , which by construction of (M̃, !̃)

and the inductive hypothesis, must also hold for every point reachable from !̃ in
M̃ by �’s accessibility relation. Hence, (M̃, !̃) ⊧ '.
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b) The proof for the cases involving the connectives: ¬, ∨, and ∧, follows similarly
to (3a).

Furthermore, from (3a), (A.1) holds for formulae involving the modal operators  and
 , and hence the lemma holds true.
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