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Abstract

The logics of knowledge are modal logics that have been shown to be effective in represent-
ing and reasoning about knowledge in multi-agent domains. Relatively few computational
frameworks for dealing with computation of models and useful transformations in logics
of knowledge (e.g., to support multi-agent planning with knowledge actions and degrees
of visibility) have been proposed. This paper explores the use of logic programming (LP)
to encode interesting forms of logics of knowledge and compute Kripke models. The LP
modeling is expanded with useful operators on Kripke structures, to support multi-agent
planning in the presence of both world-altering and knowledge actions. This results in the
first ever implementation of a planner for this type of complex multi-agent domains.
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1 Introduction

Modeling real-world planning scenarios that involve multiple agents has been an

active area of research over the years. A considerable source of complexity derives

from those scenarios where agents need to reason about knowledge and capabilities

of other agents in order to accomplish their tasks. For example, a gambling agent

needs to reason about what other players may know about the game in order to

make the next move. Reasoning about knowledge and capabilities in multi-agent

domains differs significantly from the same problem in single-agent domains. The

complexity arises from two sources: (1) the representation of a planning domain

needs to model not only the state of the world, but also the knowledge/beliefs of

the agents; (2) the actions performed by an agent may lead to changes in knowledge

and beliefs of different agents, e.g., action like announcements, cheating, lying, etc.

Variousmodal logics have been developed for reasoning about knowledge in multi-

agent systems (see, e.g., (Fagin et al. 1995; Halpern 1995; van Ditmarsch et al. 2007)).

The semantics of several of these logics is provided in terms of Kripke structures—

where, intuitively, each Kripke structure captures the knowledge/beliefs of all the

http://arxiv.org/abs/1007.3700v1
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agents. Naturally, when reasoning about knowledge of multiple agents in a dy-

namic environment, it is necessary to devise operations for updating Kripke struc-

tures after the occurrence of an action, as suggested in (Baltag and Moss 2004;

van Benthem et al. 2006; van Ditmarsch et al. 2007). Two important questions, that

have been less frequently considered, are: (1) how can one determine the initial

model or the initial Kripke structure of a theory encoding the knowledge of the

agents, and (2) what udpate operations on Kripke structures are necessary to lay

the foundations of a high-level multi-agent action language.

The dominant presence of Kripke structures in different formalizations of multi-

agent domains indicates that any system employing modal logic for reasoning and

planning in multi-agent domains would need to implement some operations for the

manipulation of Kripke structures. The lessons learned in the research in single-

agent domains suggest that a high-level action language for multi-agent domains

could be very useful. The development of such high-level language does not only

help in modeling but also provides a new opportunity for the development of plan-

ning systems operating on top of this language. The complexity of various rea-

soning problems in modal logics (e.g., satisfaction, validity, etc.) and the difficulty

in updating a Kripke structure after the occurrence of an event provide a com-

putational challenge for logic programming. It is interesting to observe that, al-

though there have been a few implementations of temporal logics in ASP (e.g.,

(Heljanko and Niemelä 2003; Son et al. 2006)), to the best of our knowledge, there

has been no attempt in using logic programming for computing models of modal

logics except in our recent work (Baral et al. 2010b). Our initial experience reveals

that ASP-based implementation encounter severe difficulties, mostly associated to

the grounding requirements of ASP. This also drives us to explore alternatives.

In this paper, we investigate the use of Prolog in the development of a computa-

tional framework for reasoning and planning in multi-agent domains. The advantage

of Prolog lies in that it allows the step-by-step examination of parts of a Kripke

structure without the need of constructing the complete structure. We focus on

two initial aspects: computing the initial model of a theory of knowledge and ma-

nipulating Kripke structures. To this end, we will make use of a high-level action

language for the specification of various types of actions in multi-agent domains.

2 Background: The Logics of Knowledge

In this paper we follow the notation established in (Fagin et al. 1995). The modal

language LKA builds on a signature that contains a collection of propositions F

(often referred to as fluents), the traditional propositional connectives, and a finite

set of modal operators Ki for each i in a set A. We will occasionally refer to the

elements in the set A as agents, and the pair 〈A,F〉 as a multi-agent domain.

LKA formulae are defined as follows. A fluent formulae is a propositional for-

mula built using fluents and the standard Boolean operators ∨,∧,¬, etc. A modal

formulae is (i) a fluent formula, or (ii) a formula of the form Kiψ where ψ is a

modal formula, or (iii) a formula of the form ψ ∨ φ, ψ ∧ φ, or ¬ψ, where ψ and φ

are modal formulae. In addition, given a formula ψ and a non-empty set α ⊆ A:
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• Eαψ denotes the set of formulae {Kiψ | i ∈ α}.

• Cαψ denotes the set of formulae of the form Ek
αψ, where k ≥ 1 and Ek+1

α ψ =

Ek
αEαψ (and E1

αψ = Eαψ).

An LKA theory is a set of LKA formulae.

The semantics of LKA theories is given by Kripke structures. A Kripke structure

is a tuple (S, π, {Ki}i∈A), where S is a set of state symbols, π is a function that

associates an interpretation of F to each state in S, and Ki ⊆ S × S for i ∈ A.

Different logic systems for reasoning with a LKA theory have been introduced;

these differ in the additional axioms that the models are required to satisfy, e.g.,

• P: all instances of axioms of propositional logic

• K: (Kiϕ ∧Ki(ϕ⇒ φ))⇒ Kiφ

• T: Kiϕ⇒ ϕ

• 4: Kiϕ⇒ KiKiϕ

• 5: ¬Kiϕ⇒ Ki¬Kiϕ

• D: ¬Kifalse

For example, the following modal logic systems are frequently used (Halpern 1997):

S5 satisfies all of the above axioms with the exception of (D), KD45 includes the

four axioms K, 4, 5, and D, S4 includes the axioms K, T, and 4, and T includes

the two axioms K and T.

Given a Kripke structure M = (S, π, {Ki}i∈A) and a state s ∈ S, we refer to

the pair (M, s) as a pointed Kripke structure—and s is referred to as the real state.

The satisfaction relation between LKA-formulae and a pointed Kripke structure

(M, s) is defined as follows: (i) (M, s) |= ϕ if ϕ is a fluent formula and π(s) |= ϕ;

(ii) (M, s) |= Kiϕ if (M, s′) |= ϕ for every s′ such that (s, s′) ∈ Ki; and (iii)

(M, s) |= ¬ϕ iff (M, s) 6|= ϕ.

We will often view a Kripke structure M as a directed labeled graph, with S

as its set of nodes, and whose set of arcs contains (s, i, t) iff (s, t) ∈ Ki. (s, i, t) is

referred to as an arc, from the state s to the state t. We identify special types of

Kripke structures depending on the properties of Ki:

• M is r if, for each i ∈ A, Ki is reflexive relation;

• M is rt if, for each i ∈ A, Ki is reflexive and transitive;

• M is rst if, for each i ∈ A, Ki is reflexive, symmetric, and transitive;

• M is elt if, for each i ∈ A, Ki is transitive, Euclidean (i.e., for all s1, s2, s3, if

(s1, s2) ∈ Ki and (s1, s3) ∈ Ki then (s2, s3) ∈ Ki), and serial (i.e., for each s

there exists s′ such that (s, s′) ∈ Ki).

We use M [S], M [π], and M [i], to denote the components S, π, and Ki of M .

3 A Simple Action Language for Multi-agent Domains

In (Baral et al. 2010a), we proposed an action language mA for multi-agent do-

mains that considers various types of actions, such as world-altering actions, an-

nouncement actions, and sensing actions. In this language, a multi-agent theory is

specified by two components: a LKA theory and an action description. The former

describes the initial state of the world and knowledge of the agents. The latter
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describes the actions and their effects. We will next briefly describe the syntax of

mA.

• The initial state description is specified by axioms of the form:

◦ Modal logic system: includes one statement of the form system(n), where n ∈

{T,S4,S5,KD45,none}.

◦ Theory: includes statements of the form init(ϕ), where ϕ is a LKA formula.

• The action description consists of axioms of the following forms:

a executable if δ (1)

a causes ϕ if ψ performed by α (2)

a announces φ performed by α observed by β (3)

a determines f performed by α observed by β (4)

where a is an action, α, β are sets of agents fromA, δ is an arbitrary LKA formula,

ϕ and ψ are conjunction of fluent literals (a fluent literal is either a fluent f ∈ F

or its negation ¬f), φ is a restricted formula (a fluent formula, a formula Kiϕ,

or a formula ¬(Kiϕ ∨Ki(¬ϕ)), where ϕ is a fluent formula), and f is a fluent.

An axiom of type (1) states the executability condition of the action a, (2) describes

a world-altering action, (3) an announcement action, and (4) a sensing action. For

the sake of simplicity, we assume that the conditions ψ in the axioms (2) for the

same action a are mutually exclusive. An announcement will be referred to as a

public announcement if α = A and β = ∅, otherwise it will be referred to as a

private announcement. When it is a private announcement, we restrict φ to be a

fluent literal. By (A,F , D, I) we denote a multi-agent theory over 〈A,F〉 with the

initial state I and the action description D.

Observe that all axioms describing actions include a part indicating the agents

participating in the action, i.e., who executes the action (performed by) and who

is aware of the action occurrence (observed by). This is necessary, and dealing

with this separation is one of the most difficult issues in reasoning about knowledge

in multi-agent environments (Baltag and Moss 2004).

Given a multi-agent theory (A,F , D, I), we are interested in queries of the form

ϕ after [a1; . . . ; an] (5)

which asks whether ϕ, a LKA formula, holds after the execution of the action

sequence [a1, . . . , an] from the initial state.

Example 1

A, B, and C are in a room. On the table in the middle of the room is a box with

a lock which contains a coin. No one knows whether the head or the tail is up and

it is common among them that no one knows whether head or tail is up. Initially,

A and C are looking at the box and B is not. One can peek at the coin to know

whether its head or tail is up. To do so, one needs a key to the lock and looks at the

box. Among the three, only A has the key for the lock. An agent can make another

agent not to look at the box by distracting him/her.

init(looking_at_box(a)). init(looking_at_box(c)). init(~looking_at_box(b)).
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init(~k(a,tail)). init(~k(b,tail)). init(~k(c,tail)).

init(~k(a,~tail)). init(~k(b,~tail)). init(~k(c,~tail)).

init(has_key(a)). init(~has_key(b)). init(~has_key(c)).

peek(X,Y) executable if looking_at_box(X), looking_at_box(Y), has_key(X).

distract(X,Y) executable if true.

peek(X,Y) determines tail performed_by X observed_by Y.

distract(X,Y) causes ~looking_at_box(Y) if true performed by X.

4 Computing the Initial State

Computing an initial state of a multi-agent theory (A,F , D, I) means to compute

a pointed Kripke structure (M, s) satisfying I where (M, s) satisfies I if

• (M, s) is a pointed Kripke structure w.r.t. the multi-agent domain 〈A,F〉;

• For each init(ϕ) ∈ I we have that (M, s) |= ϕ;

• If system(T) ∈ I (resp. system(S4), system(S5), system(KD45)), then M is

r (resp. rt, rst, elt).

4.1 Computing Initial State Using Answer Set Programming

In (Baral et al. 2010b), we proposed an answer set programming (ASP) (Marek and Truszczyński 1999;

Niemelä 1999) implementation for computing the initial state of multi-agent the-

ories. The implementation follows the basic idea of ASP by converting the initial

state specification I to an ASP program ΠI(m), with m being the number of states

of the structure, whose answer sets are pointed Kripke structures satisfying I. The

language of ΠI(m) includes:

◦ A set of facts fluent(f) (agent(a)) for each f ∈ F (resp. a ∈ A);

◦ A set of constants s1, . . . , sn, representing the names of the possible states;

◦ Atoms of the form state(S), denoting the fact that S is a state in the Kripke

structure being built;

◦ Atoms of the form h(ϕ, S), indicating that the formula ϕ holds in the state S in

the Kripke structure. These atoms represent the interpretation π associated with

each state and the set of formulae entailed by the pointed Kripke structure;

◦ Atoms of the form r(A,S1, S2), representing the accessibility relations of the

Kripke structure, i.e., (S1, S2) ∈ KA in the Kripke structure;

◦ Atoms of the form t(S1, S2), used to represent the existence of a path from S1 to

S2 in the Kripke structure present;

◦ Atoms of the form real(S), to denote the real state of the world.

We assume formulae to be built from fluents, propositional connectives, and modal

operators (in keeping with our previous definition). In particular, the fact that a

formula of the form KAϕ holds in the current Kripke structure with respect to a

state S is encoded by atoms of the form k(A,S, ϕ).
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The creation of the model requires selecting which states and which connections

should be included in the Kripke structure and is expressed by choice rules:

1{state(s1), . . . , state(sn)}m ←

0{h(F, S)}1 ← fluent(F ), state(S)

0{r(A,S1, S2) : state(S1) : state(S2)}1 ← agent(A)

1{real(S) : state(S)}1 ←

These rules will generate a pointed Kripke structure (M, s) whose states belong

to {s1, . . . , sn} with s indicated by real(s). The program is completed with rules

determining the truth value of a formula in a given pointed structure. For instance,

rules for checking whether an agent A knows a literal L are:1

n k(A,S, F ) ← r(A,S, S1), h(¬F, S1)

n k(A,S,¬F ) ← r(A,S, S1), h(F, S1)

k(A,S, L) ← not n k(A,S, L)

In addition to the above rules, ΠI(m) also contain rules encoding the additional

properties imposed by a specific modal logic system:

r(A,S, S) ← reflexivity, state(S), agent(A)

r(A,S1, S2) ← symmetry, r(A,S2, S1)

r(A,S1, S3) ← transitivity, r(A,S1, S2), r(A,S2, S3)

1{r(A,S, T ) : state(T )} ← serial, state(S)

r(A,S2, S3) ← euclidean, r(A,S1, S2), r(A,S1, S3)

We can activate the necessary rules according to the modal logic system; e.g., if

system(S4) ∈ I, then we add the facts reflexive and transitive to ΠI(m).

Finally, in order to ensure that a pointed structure satisfying I is generated, we

add to ΠI(m) the constraint: ← init(ϕ), real(S), not h(ϕ, S).

The program ΠI(m) can be used not only to generate models of I but also to

retrospectively identify properties of I given a history of action occurrences. In

(Baral et al. 2010b), we used ΠI(m) to solve the muddy children problem.

For example, one of the Kripke structures generated for the initial specification

of Example 1 includes: (1) two states (S = {s1, s2}), (2) the interpretations π(s1)

and π(s2) make looking at box true for a, c and false, has key true for a and false

for b, c, and they differ on the truth value of tail (e.g., tail is true in π(s1) and

false in π(s2)), and (3) (si, sj) ∈ Kx for each x ∈ {a, b, c} and i, j ∈ {1, 2}.

4.2 Computing Initial State Using Prolog

The elegance of ASP encoding has unfortunately to deal with the complexity of

grounding imposed by modern ASP systems—and this will motivate our contribu-

tion of using Prolog for this task. Indeed, it is possible to find even simple theories

of logics of knowledge that are beyond the capabilities of ASP.

1 (Baral et al. 2010b) contains rules for checking whether (M,s) entails other types of formulae.
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Example 2 (Sum and Product)
An agent chooses two numbers 1 < x < y such that x+ y ≤ 100. The sum x+ y is

communicated to agent s while the product x ∗ y is communicated to agent p. The

following conversation takes place between the two agents:

• p states that it does not know the numbers x, y

• s indicates that it already knew this fact

• p states that now it knows the two numbers x, y

• s states that now it knows the two numbers x, y as well.

Let us consider the problem of generating an initial Kripke structure for the above

story. The two agents are operating on states that can be represented by a pair

(x, y) satisfying the given conditions. It is reasonable to assume that initially, the

agents will need to consider all possible states. This is encoded in ASP by the rule:

state(X,Y )← 1 < X,X < Y,X + Y < 101

It is easy to see that the number of states is 2352. To generate the initial Kripke

structure using ASP, we would have to use the rule

0{r(A, state(X,Y ), state(X1, Y1), 0) : state(X,Y ) : state(X1, Y1)}1← agent(A)

which will produce 23522 ground rules for each agent during the grounding. Com-

puting a model for a program consisting of only this rule and the rule defining the

states is already impossible.2 A reasonable (but ad-hoc) way is to use the rules

r(s, state(X,Y ), state(X1, Y1), 0)← X + Y = X1 + Y1, state(X,Y ), state(X1, Y1)

r(p, state(X,Y ), state(X1, Y1), 0)← X ∗ Y = X1 ∗ Y1, state(X,Y ), state(X1, Y1)

which reduces the number of ground rules to less than 2352 × 110 (2352 × 99 for

the sum, 2352 × 10 for the product) in total. Intuitively, these rules indicate that

there is a link labeled s between state(x, y) and state(x′, y′) iff x+ y = x′ + y′, and

there is a link labeled p between state(x, y) and state(x′, y′) iff x × y = x′ × y′.

Using these rules, Clingo/Smodels3 is able to find a model (i.e., a possible Kripke

structure) within a few seconds.

In order to verify that the generated Kripke structure satisfies the initial state-

ments of the story, we will need to introduce fluents of the form sum(S) and

product(S) to denote the sum and product of the two numbers of a state S = (X,Y ).

We would also need to have fluents of the form x(S) and y(S) to represent that x

and y are the two components of the state S.

The rules describing the truth values of the fluents are:

h(x(X), state(X,Y ))← h(sum(S), state(X,Y ))← S = X + Y

h(y(Y ), state(X,Y ))← h(product(P ), state(X,Y ))← P = X ∗ Y

With these fluents, we can define a formula stating that an agent knows the value

of the two numbers by s knows ≡
∨

state(x,y)Ks(x(X) ∧ y(Y )) and p knows ≡
∨

state(x,y)Kp(x(X) ∧ y(Y )).

2 We got the “Out of memory” message in Clingo. Lparse did not finish.
3 potassco.sourceforge.net, www.tcs.hut.fi/Software/smodels

potassco.sourceforge.net
www.tcs.hut.fi/Software/smodels
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The initial pointed Kripke structure is one that satisfies the formula ¬p knows

and ks(¬p knows). This is what p and s state in their first announcement, respec-

tively. Thus, to construct the initial pointed Kripke structure, we will need to add

the rules defining the predicate k(Agent, State, Formula) and other rules relating

to this predicate. We will also need to add the constraints

← real(X,Y ), not k(p, state(X,Y ), p knows)

← real(X,Y ), not k(s, state(X,Y ),¬k(p, state(X,Y ), p knows))

The first constraint corresponds to p’s first statement and the second to s’s first

statement. Adding these rules to the program, the ASP program does not find a

model within two hours. The main culprit is the number of ground rules that need

to be generated before the answer set can be computed. For instance, the number of

rules defining n k, (as described in the previous section) is roughly 23522 (quadratic

to the number of the states).

Many of these complications can be avoided by changing the model of compu-

tation from a bottom-up model (as used by ASP) to a top-down one (as used by

Prolog). The Prolog encoding builds the similar clauses as described for ASP, to

verify validity of a formula in a Kripke structure. The advantage is that, by op-

erating top-down, the components of the structure are computed when requested

(instead of being precomputed a priori during grounding).

We will now present a Prolog encoding for computing the initial pointed Kripke

structure for a multi-agent theory. Each Kripke structure can be encoded using

terms of the form kripke(N,E) where N is a list of nodes and E a list of edges. Each

node is a term node(Name, Interpretation), where Name is a name for the node

and the interpretation is encoded as a list of terms value(Fluent,true/false).

A pointed Kripke structure is encoded as a term sit(kripke(N,E), Node) where

Node is an element from the list N. The clauses to express the validity of a formula

are very similar to the one presented earlier, e.g.,4

hold(F,sit(kripke(_Nodes,_Edges),N)) :-

fluent(F),!, N = node(_Name,Int), member(value(F,true), Int).

hold(neg(F), Sit) :- \+hold(F,Sit), !.

hold(k(A,F), sit(kripke(N,E),node(X,_))) :-

findall(M,member(edge(X,M,A),E),Nodes), iterated_hold(Nodes,F,kripke(N,E)).

iterated_hold([],_,_).

iterated_hold([A|B],F, kripke(N,E)) :-

member(node(A,I),N), hold(F, sit(kripke(N,E),node(A,I))),

iterated_hold(B,F,kripke(N,E)).

In the sum-and-product example, the initial Kripke structure can be implicitly

defined using implicit rules to construct the edges of the graph:

edge(node(N1,Int1),node(N2,Int2),s) :-
member(value(x(X),true),Int1), member(value(y(Y),true),Int1),
member(value(x(X1),true),Int2), member(value(y(Y1),true), Int2), X+Y =:= X1+Y1.

edge(node(N1,Int1),node(N2,Int2),p) :-

4 The explicit representation of interpretations can be easily replaced with implicit encodings
whenever specific domain knowledge is available.
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member(value(x(X),true),Int1), member(value(y(Y),true),Int1),
member(value(x(X1),true),Int2), member(value(y(Y1),true), Int2), X*Y =:= X1*Y1.

The Prolog implementation of the announcements as constraints on the Kripke

structure allows us to quickly converge on identifying x = 4 and y = 13 as the

real state of the pointed Kripke structure in a matter of seconds (10.5 seconds on

a MacBook Pro, 2.53GHz core duo).

5 The Semantics of mA

We will now describe the semantics ofmA, based on the construction of a transition

function. For the sake of simplicity, in this manuscript we will restrict our discussion

to domains where the initial state of the domain is described by one pointed Kripke

structure and the actions are deterministic. Thus, the transition function is a map

from a pointed Kripke structure and an action to another pointed Kripke structure.5

5.1 Basic Kripke Structure Transformations

We start by introducing some basic transformations of Kripke structures necessary

to model the evolution in models caused by the execution of actions. We also show

how, following the representation of Kripke structures discussed in Section 2, it is

possible to naturally encode these operators in Prolog.

Given a Kripke structure M , a set of states U ⊆ M [S], and a set of arcs X

in M , M
s
⊖ U is the Kripke structure M ′ defined by (i) M ′[S] = M [S] \ U ; (ii)

M ′[π](s)(f) = M [π](s)(f) for every s ∈ M ′[S] and f ∈ F ; and (iii) M ′[i] =

M [i]\{(t, v) | (t, v) ∈M [i], {t, v}∩U 6= ∅} for every agent i ∈ A. Intuitively,M
s
⊖U

is the Kripke structure obtained by removing from M all the states in U .

The
s
⊖ operator is encoded by the following Prolog rules:

node_minus(kripke(N,E), S, kripke(N1,E1)) :-

delete(N,S,N1), remove_node_edges(S,E,E1).

remove_node_edges([],E,E).

remove_node_edges([A|B], E, NewEs) :-

remove_one_node_edges(A,E, Es1), remove_node_edges(B, Es1, NewEs).

remove_one_node_edges(_,[],[]).

remove_one_node_edges(node(Node,Int), [edge(N1,N2,_)|Rest], Result) :-

(N1=Node ; N2 = Node), !,

remove_one_node_edges(node(Node,Int), Rest, Result).

remove_one_node_edges(N,[E|Rest],[E|Result]) :-

remove_one_node_edges(N,Rest,Result).

M
a
⊖X is a Kripke structure,M ′, defined by (i)M ′[S] =M [S]; (ii)M ′[π] =M [π];

and (iii) M ′[i] = M [i] \ {(u, v) | (u, i, v) ∈ X} for i ∈ A. M
a
⊖ X is the Kripke

structure obtained by removing from M all the arcs in X . The encoding of
a
⊖ is:

5 It is easy to generalize this to maps where the possible configurations are described by sets of
pointed Kripke structures and the actions are non-deterministic.
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edge_minus(kripke(N,E), Es, kripke(N,E1)) :- delete(E,Es,E1).

Given two Kripke structures M1 and M2, we say that M1 is c-equivalent6 to M2

(M1
c
∼M2) if there exists a bijective function c :M1[S]→M2[S] such that: (i) for

every u ∈ S and f ∈ F , M1[π](u)(f) = true iff M2[π](c(u))(f) = true; and (ii) for

every i ∈ A and u, v ∈M1[S], (u, v) ∈M [i] iff (c(u), c(v)) ∈M2[i].

M1 and M2 are compatible if for every s ∈ M1[S] ∩ M2[S] and every f ∈ F ,

M1[π](s)(f) =M2[π](s)(f).

For two compatible Kripke structures M1 and M2, we define M1

κ
∪M2 to be the

Kripke structureM ′, where (i)M ′[S] =M1[S]∪M2[S]; (ii)M
′[π] =M1[π]◦M2[π];

7

and (iii) M ′[i] =M1[i] ∪M2[i]. The encoding in Prolog of M1

κ
∪M2 is

union_kripke(kripke(N1,E1), kripke(N2,E2), kripke(N3,E3)) :-

append(N1,N2,N4), remove_dups(N4,N3), append(E1,E2,E4), remove_dups(E4,E3).

For a pair of Kripke structures M1 and M2 with M1[S]∩M2[S] = ∅, α ⊆ A, and

a one-to-one function λ : M2[S] → M1[S], we define M1 ⊎λα M2 to be the Kripke

structure M ′, where (i) M ′[S] = M1[S] ∪M2[S]; (ii) M
′[π] = M1[π] ◦M2[π]; (iii)

M ′[i] = M1[i] ∪M2[i] for each i ∈ α, and M ′[i] = M1[i] ∪M2[i] ∪ {(u, v) | u ∈

M2[S], v ∈M1[S], (λ(u), v) ∈M1[i]} for each agent i ∈ A \ α.

Intuitively, the operators
κ
∪ and ⊎λα allow us to combine different Kripke structures

representing knowledge of different groups of agents, thereby creating a structure

representing the knowledge of all the agents. The encoding of ⊎λα in Prolog is:

knowledge_union(kripke(N1,E1), kripke(N2,E2), Alpha, Map, kripke(N3,E3)) :-

check_k_union_properties(N1,N2,Map), union_list(N1,N2,N3),

generate_k_union_edges(E1, N2, Alpha,Map, NewOnes),

union_list(E1,E2,E4), union_list(E4,NewOnes,E3).

generate_k_union_edges([], _, _, _, []).

generate_k_union_edges([edge(_,_,Label)|Rest],Nodes,Alpha,Map,NRest) :-

member(Label,Alpha), !, generate_k_union_edges(Rest,Nodes,Alpha,Map,NRest).

generate_k_union_edges([edge(Start,End,Label)|Rest], Nodes, Alpha,

Map, [NEdge|NRest]) :-

member([N,Start], Map), NEdge = edge(N,End,Label),

generate_k_union_edges(Rest,Nodes,Alpha,Map,NRest).

Several types of actions require the creation of “copies” of a Kripke structure,

typically to encode the knowledge of the agents that are unaware of actions being

executed. Let (M, s) be a pointed Kripke structure, and α be a set of agents:

• A pointed Kripke structure (M ′, c(s)) is a replica of (M, s) if M ′ c
∼ M and

M ′[S] ∩M [S] = ∅;

• (M, s)|α = (M
a
⊖X, s) where X =

⋃

i∈α{(u, i, v) | (u, v) ∈M [i]};

A replica of a pointed Kripke structure (M, s) refers to a copy of (M, s) with respect

to a bijection c. The pointed Kripke structure (M, s)|α, referred to as the restriction

of (M, s) on α, encodes the knowledge of the agents in the set A \ α. In Prolog:

6 This form of equivalence is similar to the notion of bisimulation in (Baltag and Moss 2004).
7 More precisely, M ′[π](s)(f) = M1[π](s)(f) if s ∈ M1[S] and M ′[π](s)(f) = M2[π](s)(f) if
s ∈ M2[S] \M1[S].
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replica(kripke(N,E), kripke(N1,E1), Map) :-

replica_nodes(N,N1,Map), replica_edges(E,Map,E1).

replica_nodes([],[],[]).

replica_nodes([node(Name,Int)|Rest], [node(NewName,Int)|NewRest],

[[NewName,Name]|RestMap]) :-

new_state_name(NewName), replica_nodes(Rest,NewRest,RestMap).

replica_edges([],_,[]).

replica_edges([edge(Start,End,Agent)|Rest], Map,

[edge(NewStart,NewEnd, Agent)|NewRest]) :-

member([NewStart,Start], Map), member([NewEnd,End],Map),

replica_edges(Rest,Map,NewRest).

remove_agent_edges(kripke(N,E), Alpha, K) :-

collect_agent_edges(E,Alpha,Edges), edge_minus(kripke(N,E), Edges, K).

collect_agent_edges([],_,[]).

collect_agent_edges([edge(Start,End,Agent)|Rest], Alpha,

[edge(Start,End,Agent)|NewRest]) :-

member(Agent,Alpha),!, collect_agent_edges(Rest,Alpha,NewRest).

collect_agent_edges([_|Rest], Alpha, NewRest) :-

collect_agent_edges(Rest,Alpha,NewRest).

5.2 Action Transition Function

The following definitions are used to determine, given a pointed Kripke structure

(M, s), what are the pointed Kripke structures obtained from the execution of an

action. We will denote with succ(a, (M, s)) the pointed Kripke structure resulting

from the execution of the action a in (M, s). Observe that in the following defi-

nitions we view a set of literals as the conjunction of its elements. We will define

succ(a, (M, s)) for each type of action. Let a be an action. By pre(a) we denote the

formula δ, the condition in the law of the from (1) whose action is a. We begin with

the public announcement action.

Public Announcement: Consider a pointed Kripke structure (M, s) and an action in-

stance a occurring in an announcement law (3) such that (M, s) |= φ. The successor

pointed Kripke structure after the execution of a in (M, s) is defined as follows. If

(M, s) 6|= pre(a), then succ(a, (M, s)) is undefined, denoted by succ(a, (M, s)) = ⊥.

The first case deals with the assumption that the action should be executable in

(M, s)—otherwise the resulting successor pointed Kripke structure is undefined.

If (M, s) |= φ then we have different cases depending on the structure of φ. If φ is a

fluent formula then succ(a, (M, s)) = (M
s
⊖ U, s) for U = {s′ | s′ ∈M [S], (M, s′) 6|=

φ}. This can be captured by the following rules:

succ(sit(kripke(N,E),S), public(Phi), sit(kripke(N1,E1),S)) :-

fluent_formula(Phi), !,

get_nodes_not_satisfy_formula(Phi, kripke(N,E), Nodes),

node_minus(kripke(N,E), Nodes, kripke(N1,E1)).

get_nodes_not_satisfy_formula(Phi, kripke(N,E), Nodes) :-

iterate_not_satisfy(N,Phi,kripke(N,E), Nodes).

iterate_not_satisfy([],_,_,[]).

iterate_not_satisfy([A|B],F,K,Rest) :-

hold(F,sit(K,A)), !, iterate_not_satisfy(B,F,K,Rest).
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iterate_not_satisfy([A|B], F, K, [A|Rest]) :- iterate_not_satisfy(B,F,K,Rest).

If φ = Kiψ, then succ(a, (M, s)) = (M
a
⊖X, s) where X = {(u, i, v) | (u, v) ∈

M [i], (M, v) 6|= ψ}. This is captured by the following rules:

succ(sit(kripke(N,E),S), public(Phi), sit(kripke(N1,E1),S)) :-

Phi = k(A,Psi), fluent_formula(Psi), !,

get_edges_not_satisfy(E, A, Psi, kripke(N,E), Edges),

edge_minus(kripke(N,E), Edges, kripke(N1,E1)).

get_edges_not_satisfy([],_,_,_, []).

get_edges_not_satisfy([Edge|Rest], Agent, Psi, kripke(N,E),[Edge|Result]) :-

Edge=edge(Start,End,Agent), member(node(End,Int), N),

\+ hold(Psi, sit(kripke(N,E), node(End,Int))), !,

get_edges_not_satisfy(Rest,Agent,Psi,kripke(N,E), Result).

get_edges_not_satisfy([_|Rest],Agent,Psi,K,Result) :-

get_edges_not_satisfy(Rest,Agent,Psi,K,Result).

If φ = ¬(Kiψ∨Ki¬ψ), then succ(a, (M, s)) = (M
s
⊖ U, s) where U={s′ | s′ ∈

M [S], (M, s′) |= Kiψ ∨Ki¬ψ}. We omit the Prolog code due to lack of space.

If the announcement happens in a pointed Kripke structure (M, s) where (M, s) |=

ϕ, then we need to ensure that ϕ is common knowledge (strictly speaking, this is the

belief of the agents) among the agents of the system. This accounts for our removal

of all nodes s′ such that (M, s′) 6|= ϕ. Similarly, if a formula Kiψ is announced,

we only remove arcs labeled by i from M whose existence invalidates the formula

CAKiψ. On the other hand, when a formula ¬(Kiψ∨Ki¬ψ) is announced, we need

to remove states in M whose existence invalidates the formula CA¬(Kiψ∨Ki¬ψ).

Continuing with Example 1, the execution

of the action peek(a,c) in the initial Kripke

structure described earlier transforms the Kripke

structure as illustrated in Figure 1, where the

double circle identifies the real state of the

world, H denotes a state where tail is false

and T denotes a state where tail is true.

H

A, B, C

T

A, B, C

A, B, C

H

A, C

B

B

T

A, C

B

B

H

A, B, C

T

A, B, C

A, B, C

C
(M, H)

Fig. 1: Execution of peek(a,c)

Private Announcement: Consider a pointed Kripke structure (M, s) and a private

announcement action a with β 6= A, where the effect is the literal ℓ and (M, s) |= ℓ.

Let us also assume that f is the fluent used in the literal ℓ. The pointed Kripke

structure (M ′, s′) is the successor model after the execution of a in (M, s) if:

• (M, s) |= pre(a) then (M ′, s′) = (M, s) ⊎cβ∪γ (M r|A\(β∪γ)

a
⊖ X, c(s)) where

(M r, c(s)) is a replica of (M, s) andX =

{

(u, i, v)
i ∈ β, (u, v) ∈M [i],

M [π](u)(f) 6=M [π](v)(f)

}

;

• (M, s) 6|= pre(a) and (M ′, s′) = ⊥.
The general successful case can be captured as:

succ(sit(kripke(N,E),S), private(Phi,Alpha,Beta), sit(kripke(N1,E1),St1)) :-

get_literal_fluent(Phi,F), replica(kripke(N,E), kripke(N2,E2), Map),

non_agents(Alpha,Beta,RemAgs),

remove_agent_edges(kripke(N2,E2), RemAgs, kripke(N3,E3)),

catch_discriminating_edges(E3,kripke(N3,E3),Alpha,F, X),
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edge_minus(kripke(N3,E3), X, kripke(N4,E4)),

append(Alpha,Beta,AlphaBeta),

knowledge_union(kripke(N,E), kripke(N4,E4), AlphaBeta, Map,kripke(N1,E1)),

S = node(NameS,_), member([S1, NameS],Map), member(node(S1,Int1),N1),

St1 = node(S1,Int1).

The predicate non agents collects all agents not in Alpha and Beta. The pred-

icate catch discriminating edges identifies edges for which the agents in Alpha

see distinct truth values for the considered literal:

catch_discriminating_edges([],_,_,_,[]).

catch_discriminating_edges([Ed|Rest], kripke(N,E), Alpha, F, [Ed|NewRest]) :-

Ed = edge(Start,End,Agent), member(Agent,Alpha),

member(node(Start,Int1), N), member(node(End,Int2), N),

member(value(F,V1), Int1), member(value(F,V2), Int2), V1 \= V2, !,

catch_discriminating_edges(Rest, kripke(N,E), Alpha, F, NewRest).

catch_discriminating_edges([_|Rest], K, Alpha, F, NewRest) :-

catch_discriminating_edges(Rest,K,Alpha,F,NewRest).

Sensing: Let (M, s) be a pointed Kripke structure and a be a sense action. A model

(M ′, s′) is a successor model after the execution of a in (M, s) if:

(M ′, s′) = (M, s) ⊎cα∪β (M r|A\(α∪β)

a
⊖X, c(s))

for X = {(u, i, v) | i ∈ α, (u, v) ∈ M r[i],M r[π](u)(f) 6= M r[π](v)(f)} and some

replica (M r, c(s)) of (M, s). The Prolog code is similar to the private announcement:

succ(sit(kripke(N,E),S), sense(F,Alpha,Beta), sit(kripke(N1,E1),St1)) :-

replica(kripke(N,E), kripke(N2,E2), Map), non_agents(Alpha,Beta,RemAgs),

remove_agent_edges(kripke(N2,E2), RemAgs, kripke(N3,E3)),

catch_discriminating_edges(E3,kripke(N3,E3),Alpha,F, X),

edge_minus(kripke(N3,E3), X, kripke(N4,E4)), append(Alpha,Beta,AlphaBeta),

knowledge_union(kripke(N,E), kripke(N4,E4), AlphaBeta, Map,kripke(N1,E1)),

S = node(NameS,_), member([S1, NameS],Map),

member(node(S1,Int1),N1), St1 = node(S1,Int1).

World-altering Action: the computation of the successor pointed Kripke structure

for world-altering actions requires the modification of the interpretations associated

to certain states. Given an interpretation π and a set of literals ϕ, let us denote with

[ϕ]π the interpretation obtained by performing the minimal amount of modifications

to π to ensure that [ϕ]π makes all the literals in ϕ true. Let u ∈ M [S] and let us

consider an axiom of type (2); the axiom is applicable in u if (M,u) |= ψ. We define

res(a, u) =

{

[ϕ]M [π](u) if a causes ϕ if ψ performed by α applicable in u

M [π](u) otherwise

Let a be a world-altering action. By Res(a,M, α) we denote the Kripke structure

M ′ which is obtained from M as follows:

• M ′[S] = {r(a, u) |M [π](u) |= pre(a)} where, for each state u ∈M [S], r(a, u)

denotes a new and distinguished state symbol;

• M ′[π](r(a, u)) = res(a, u);

• (r(a, u), r(a, v)) ∈M ′[i] if (u, v) ∈M [i] and r(a, u), r(a, v) ∈M ′[s] for i ∈ α.
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Let (M, s) be a pointed Kripke structure and let a be a world-altering action. The

successor pointed Kripke structure of a in (M, s) is defined as follows.

1. If (M, s) 6|= pre(a) then succ(a, (M, s)) = ⊥.

2. If (M, s) 6|= pre(a) then succ(a, (M, s)) is the pointed Kripke structure (M ′, s′):

• M ′[S] = Q[S] ∪M [S];

• M ′[π](u) =M [π](u) for u ∈M [S] andM ′[π](u) = Q[π](u) for u ∈ Q[S];

• M ′[i] = M [i] ∪ Q[i] ∪ R(i) where R(i) = ∅ for i ∈ α and R(i) =

{(r(a, u), v) | r(a, u) ∈ Q[S], v ∈M [S], (u, v) ∈M [i]}; and

• s′ = r(a, s).

where Q = Res(a,M, α), and a causes ϕ if ψ performed by α is the axiom

of a applicable in s.

This can be mapped to the following Prolog encoding:

succ(sit(kripke(N,E),S), altering(If,Then,Alpha), sit(kripke(N1,E1),St1)) :-

replica(kripke(N,E), kripke(N2,E2), Map), non_agents(Alpha,[],Gamma),

remove_agent_edges(kripke(N2,E2), Gamma, kripke(N3,E3)),

update_interpretations(N3,kripke(N3,E3),If, Then, N4),

knowledge_union(kripke(N,E), kripke(N4,E3), Alpha, Map, kripke(N1,E1)),

S = node(NameS,_), member([S1, NameS],Map),

member(node(S1,Int1),N1), St1 = node(S1,Int1).

update_interpretations([],_,_,_,[]).

update_interpretations([node(Name,Inter)|Rest], K, If, Then,

[node(Name,NewInter)|NewRest]) :-

(hold(If,sit(K,node(Name,Inter))) ->

change_interpretation(Then,Inter,NewInter); NewInter = Inter),

update_interpretations(Rest,K,If,Then,NewRest).

change_interpretation(F,I1,I2):- literal(F),!, single_update(F,I1,I2).

change_interpretation(and(F1,F2), I1, I2) :-

change_interpretation(F1,I1,I3), change_interpretation(F2,I3,I2).

single_update(L, I1, I2):- get_literal_fluent(L,F), delete(I1, value(F,_), I3),

(fluent(L) -> I2 = [value(F,true)|I3]; I2 = [value(F,false)|I3]).

5.3 Query Answering and Planning in Prolog

The previous encoding can be used to support hypothetical reasoning and planning

in multi-agent theories. To answer queries of the form (5) we can use the standard

rules for computing the successor states of a sequence of action and verify the

desirable properties in the final successor state. This is encoded as

hold(Query,Seq):- initial(sit(kripke(Nodes,Edges),Node)),

succ(sit(kripke(Nodes,Edges),Node), Seq, S), hold(Query, S).

succ(sit(kripke(Nodes,Edges),Node), [], sit(kripke(Nodes,Edges),Node)).

succ(sit(kripke(Nodes,Edges),Node), [A|Seq], succ(S, Seq)):-

succ(sit(kripke(Nodes,Edges),Node), A, S).

where init(S) denotes that S is the initial pointed Kripke structure and hold(F, S)

is the predicate that determines whether F holds w.r.t. S.

For planning, we need to determine a sequence of actions that will accomplish a
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certain state of the world. The planning perspective supported by the implementa-

tion below is that of an external observer, who has complete knowledge about the

capabilities of the different agents. A standard depth-first planner can be expressed

using the following definition of the predicate depthplan(S, P lan,N)—where S is

the initial pointed Kripke structure, N is a bound on the maximal length of the

plan, and Plan is the actual sequence of actions.

depthplan(S, Plan,N):- depthplan(S,[],Plan,N).

depthplan(S, PlanIn, PlanIn,_):- terminated(S).

depthplan(S0, PlanIn, PlanOut,N):- length(PlanIn,M), M < N, choose_action(A,S0),

build_action(A,Fmt), succ(S0,Fmt,S1), depthplan(S1,[A|PlanIn],PlanOut,N).

choose_action(A,S) :- action(A,_), valid(A,S).

The predicate build action perform a simple syntactic rearrangement of the

action representation (not reported). The predicate valid is used to ensure that

the action is executable in the given pointed Kripke structure:

valid(A,S):- action(A,_Type), executability(A,Condition), hold(Condition,S).

The test for termination ensures that the goal has been achieved:

terminated(S) :- goal(Phi), hold(Phi,S).

As another example, it is easy to rewrite the planner to perform a breadth-first

exploration of the search space.

breadthplan(S,Plan,N):- breadthplan(S,Plan,0,N).

breadthplan(S,Plan,M,N):- M<N, plan(S,Plan,S1), length(Plan,M), terminated(S1).

breadthplan(S,Plan, M, N):- M < N, M1 is M+1, breadthplan(S,Plan,M1,N).

plan(S1,[],S1).

plan(S0,[A|B],S):- plan(S0,B,S1), build_action(A,Format),

valid(A,S1), succ(S1,Format,S).

Other forms of reasoning, e.g., switching from the perspective of an external

observer to the perspective of an individual agent, can be similarly encoded.

6 Conclusion and Discussion

In this paper, we investigated an application of logic programming technology to the

problem of manipulating Kripke structures representing models of theories from the

logic of knowledge. We illustrated how these foundations can be used to provide a

computational background for a novel action language, mA, to encode multi-agent

planning domains where agents can perform both world-altering actions as well as

actions affecting agents’ knowledge.

To the best of our knowledge, the encoding presented in this paper is the first

implementation using Prolog of an action language with such a set of features. The

use of logic programming allows a very natural encoding of the semantics of mA,

and it facilitates the development of meta-interpreters implementing different forms

of reasoning (e.g., observer-based planning). Let us underline that generic frame-

works for reasoning with modal logics have been proposed (e.g., (Horrocks 1998;
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Farinas del Cerro et al. 2001)), and these could be used as external solvers to ad-

dress the specific tasks of recomputing models—we will explore this option in our

future work. Nevertheless, we believe the updates of Kripke structures directly per-

formed in LP and the ability of embedding such process in a LP language, which

offers other features (e.g., constraint solving) makes LP a more suitable avenue for

implementing languages like mA. Although the prototype has not been subjected

to formal testing (we are working on identifying interesting domains from the liter-

ature), simple planning tasks (e.g., develop a plan that enables agents a, c to learn

about the status of the coin while b maintains its ignorance) can be solved within

a few seconds of computation. A formal experimental evaluation will be part of the

future work.
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