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Abstract. This paper discusses the planning problem in multi-agent domains,
in which agents may execute not only world-altering actions, but also epistemic
actions. The paper reviews the concepts of Kripke structures and update models,
as proposed in the literature to model epistemic and ontic actions; it then discusses
the use of Answer Set Programming (ASP) in representing and reasoning about
the effects of actions on the world, the knowledge of agents, and planning. The
paper introduces the m.Ay language, an action language for multi-agent domains
with epistemic and ontic actions, to demonstrate the proposed ASP model.

1 Introduction

The literature on multi-agent planning has grown at a fast pace in recent years. A large
part of the literature deals with coordination between agents [5, 11,7, 6, 8, 16] and their
actions. While these issues are important, what is challenging, but less frequently ad-
dressed, is the issue of agents’ knowledge about each other’s knowledge and beliefs,
and the manipulation of such knowledge/beliefs to achieve goals. Indeed, while logis-
tics and coordination is important in multi-agent scenarios, such as those dealing with
warfare, history provides myriad examples of battles where smaller armies have out-
smarted better equipped ones, partly through the use of misinformation. Intelligence
and counter-intelligence actions play important roles in such operations.

Thus, within a multi-agent setting, an important and difficult aspect is planning that
involves the manipulation of the knowledge of agents, and not just about the physical
world, but about each other’s knowledge. In this paper, we take steps towards addressing
these issues. In particular, we are interested in planning scenarios where agents reason
about each others knowledge, perform actions to manipulate such knowledge, and de-
velop plans that can guarantee awareness/ignorance of certain properties of the world
by different agents to reach their own objectives. Consider the following example.

Example 1 (The Strongbox Domain). Agents A, B, and C are in a room. In the room
there is a box containing a coin. It is common knowledge amongst them that:

e No one knows whether the coin is showing heads or tails.

e The box is locked and one needs a key to open it.



e Only agent A has the key of the box.

e To determine the face of the coin one can peek into the box, if the box is open.

e If one is looking at the box and someone peeks into it, he will be able to conclude
that the agent who peeked knows which face of the coin is showing—but without
knowing the state of the coin himself.

e Distracting an agent causes this agent not to look at the box.

e Signaling an agent to look causes that agent to look at the box.

e Announcing that the status of the coin will cause everyone to know this fact.
Suppose that agent A wishes to know which face of the coin is up, and that he would
like agent B to become aware of the fact that he knows, while keeping agent C' in the
dark. Intuitively, agent A could achieve his goal by: (i) distracting C, keeping him from
looking at the box; (ii) signaling B to look at the box; (iii) opening the box; and finally
(iv) peeking into the box.

This simple scenario poses a number of challenges for research in multi-agent planning.
The domain contains several classes of actions: (/) Actions that allow the agents to
change the state of the world (e.g., open the box, signal/distract the agents); (2) Actions
that change the knowledge of the agents (e.g., peek into the box, announce head/tail);
(3) Actions that manipulate the beliefs of other agents (e.g., peek while other agents
observe). In order for agent A to realize that steps (i)—(iv) will achieve his goal, he must
be able to reason about the effects of actions:

o On the state of the world (e.g., opening the box causes the box to be open; distracting

causes an agent to not look at the box); and
o On the knowledge of agents about her own knowledge (e.g., someone following her
actions would know what she knows).

In this paper, we address the aforementioned problems by developing a high-level ac-
tion language for representing and reasoning about actions in multi-agent domains. The
semantics of an action theory is defined by the answer sets of a corresponding logic
program. Our approach shows that Answer Set Programming (ASP) approaches which
have been investigated for single-agent domains can be naturally generalized to multi-
agent ones. The advantage of this approach stems from the fact that ASP can be used
both as a specification and implementation language; an ASP encoding of an action
theory can be used for various reasoning tasks, e.g., hypothetical reasoning, planning,
and diagnosis. As such, it becomes an indispensable tool to explore epistemic action
languages for multi-agent systems and validate the design of action theories.

2 Preliminaries

2.1 Answer Set Programming

Let us assume a collection of propositional variables . An answer set program (ASP)
over P [10,2] is a set of rules of the form: ag < a1, ..., am, not am+1,...,n0t ay,
where 0 < m < n, each q; is an atom of P3, and not represents negation-as-failure.
A naf-literal has the form not a, where a is an atom. Given a rule of this form, the

3 A rule with variables is viewed as a shorthand for the set of its ground instances.



left and right hand sides are called the head and body, respectively. A rule may have
either an empty head or an empty body, but not both. Rules with an empty head are
called constraints—the empty head is implicitly assumed to represent false—while
those with an empty body are known as facts.

A set of ground atoms X satisfies the body of arule if {amm+1,...,a, }NX = ) and
{a1,...,am} C X. A rule with a non-empty head is satisfied if either its body is not
satisfied by X, or ap € X. A constraint is satisfied by X if its body is not satisfied by
X. Given a program II and a set of ground atoms X, the reduct of II w.r.t. X (denoted
by IT¥) is the program obtained from the set of all ground instances of IT by:

1. Deleting all the rules that have a naf-literal not « in the body where a € X, and

2. Removing all naf-literals in the bodies of the remaining rules.
A set of ground atoms X is an answer set of a program I if X is the subset-minimal
set of atoms that satisfies all the rules in the program I7X.

A program [] is said to be consistent if it has an answer set, and inconsistent other-
wise. To make answer set programming easier, Niemeli et al. [13] introduced a new type
of rule, called a cardinality constraint rule, where each atom in the rule can be a choice
atom. A choice atom has the form I{b1, ..., by }u, where each b; is an atom, and [ and
u are integers such that [ < u. Choice atoms can be also written as [{p(X) : ¢(X)}u,
where X is a set of variables—this is shorthand for the choice atom I[{p(51, . . ., p(5x }u,
where {51, ...,5.} are all the ground instances of X such that ¢(X) is true. A set of
atoms X satisfies a choice atom I{by,...,bp uif I < |X N {by,..., b} < u. The
semantics of logic programs which contain such rules is given in [13].

The fact that a program can have multiple (or no) answer sets, encourages an alter-
native method of solving problems via logic programming [12, 13]. In this approach, we
develop logic programs whose answer sets have a one-to-one correspondence with the
solutions of the particular problem being modeled. Typically an ASP program consists
of (1) Rules to enumerate the possible solutions of a problem as candidate answer sets;
and (2) Constraints to eliminate answer sets not representing solutions of the problem.

2.2 Belief Formulae and Kripke Structures

Let us consider an environment with n agents AG = {1, ..., n}. The state of the world

may be described by a set F of propositional variables, called fluents. Following [9], we

associate with each agent ¢ a modal operator B;, and represent the beliefs of an agent
as belief formulae in a logic extended by these operators:

o Fluent formulae: a fluent formula is a propositional formula built using the atomic
formulae in F and the traditional propositional connectives V, —, -, etc. A fluent
literal is either a fluent atom f € F or its negation — f.

o Belief formulae: a belief formula is a formula which has one of the following forms:
(1) a fluent formula; (2) a formula of the form B; where ¢ is a belief formula; (3) A
formula of the form 1 A 2, 1 V @2 or ~¢p; where ¢; and @9 are belief formulae.

In addition, given a belief formula, ¢, and a non-empty set « C AG, we call E,p and

C . group formulae. Furthermore, we use the shorthand form Ce to denote C 4g¢. In

the following sections, we will simply use the term formula instead of belief formula.

We denote with £ 4g the set of all formulae over F and AG.



Definition 1 (Kripke Structure). A Kripke structure with respect to* an F and AG
is a tuple (S, 7, By,...,B,), where S is a set of state symbols, 7 is a function that
associates an interpretation of F to each element of S, and B; C S x Sforl1l <i < n.
A pointed Kripke structure is defined as a pair (M, s) where M = (S, 7, B1,...,By)
is a Kripke structure and s € S (referred to as the real state of the world).

Given a Kripke structure, M = (S, 7,B1,...,B,), and a state symbol, s € S, the
satisfaction relation between belief formulae and a pointed Kripke structure (M, s) is
defined as follows:

e (M,s) = pif ¢is a fluent formula and 7(s) | ¢;

o (M,s) E=BpifVte Sst. (s,t) € B, (M,t) E ¢;

o (M,s) E—pif (M,s) & ¢

o (M,s) =1 Vpaif (M,s) E ¢y or (M,s) | ¢

o (M,s) = Eqpif (M,s) =B,y forevery i € a.

o (M,s) = Cuyp if (M,s) = EFyp for every k > 0 where: ELp = E,¢ and

Ei = B (El).
We often view a Kripke structure M as a directed labeled graph, with S as its nodes
and with an arc of the form (s, 7,t) if and only if (s,t) € B;. We use M[S], M|[r], and
MTi], to denote the components S, 7, and B; of M, respectively.

Fig. 1. An Example of a Pointed Kripke Structure and an Update Model

Consider a simplified version of the initial state in Example 1. None of the agents
A, B, and C is aware of the state of the coin, and this is common knowledge. The
box is closed. All the agents are aware that the box is closed, everyone is looking, and
everyone knows that agent A has the key. Assume that the coin is showing heads. The
knowledge of the agents together with the real world is captured by the pointed Kripke
structure shown in Fig. 1. In the figure, a circle represents a state, and is labeled by
its name and interpretation. Arcs denote the belief relations captured by the structure.
Lastly, the double circle represents the real physical state of the world.

Intuitively, a Kripke structure denotes the possible worlds envisioned by the agents,
with multiple worlds denoting uncertainty and the presence of different beliefs. The
relation (s1,s2) € B; captures the notion that agent ¢ when at the world s; can not
distinguish between the state described by the world s; and the one described by the

* When it is clear from the context we may not explicitly mention the associated F and .AG of
a Kripke structure.



world s3. Thus, M[r](s1) | ¢ and M[r](s2) = —, indicates that agent i is uncertain
about the truth of ¢.

We are often interested in Kripke structures with certain properties; for example, a
Kripke structure (S, 7, By, ..., B,) is S5 if, for each agent 7 and formulae ¢ and v the
following axioms hold: (K) (B;p A B;(¢o=¢))=B;¢; (T) B;) = ¢; 4) B;yp =
B,B,; and (5) ~Bi¢ = B,~B, .

2.3 Update Models

Program models are used to represent action occurrences, using structures similar to
pointed Kripke structures; they describe the effects of an action on states using an up-
date operator. The original proposal [1] deals with sensing and announcement actions,
later extended to world-altering (a.k.a. ontic) actions [15] (and called update models).

An L sg-substitution is a set {p1 — ¢1,...,0n — ©n}, where each p; is a
distinct fluent and each ¢; is a formula in £ 4g. We will assume that for each p €
F\ {p1,.-.,pn}, the substitution contains p — p. The set of all £ 4g-substitutions is
denoted with SUB ,.

Definition 2. An update model X is a ruple (X, {R; | i € AG}, pre, sub) where

o X is a set, whose elements are called events;

e R; C X x X foreachi € AG;

o pre: X — L g is a function mapping each event a € X to a formula in L 5g;

o sub: X — SUB. .
A update instance w is a pair (X, e) where 3 is an update model (X, {R; | i €
AG}, pre, sub) and e, referred to as a designated event, is a member in X.

Intuitively, an update model represents different views of an action occurrence which
are associated with the observability of agents. Each view is represented by an event in
J/. The designated event is the one that agents who are aware of the action occurrence
will observe. The relation R; describes agent i’s uncertainty on action execution—i.e., if
(0,7) € R; and event o is performed, then agent ¢ may believe that event 7 is executed
instead. pre defines the action precondition and sub specifies the changes of fluent
values after the execution of an action. Update models and instances are graphically
represented similarly to (pointed) Kripke structures. The update instance on the right
of Fig. 1is (X1, 0) where X1 = ({o},{Ra, Rp, Rc},pre1, suby) and Ry = Rp =
Ro ={(0,0)}, prei(o) = true, and suby (o) = {closed — false}.

Definition 3. Given a Kripke structure M and an update model ¥ = (X, {R; | i €
AG}, pre, sub), the update operator defines a Kripke structures M' = M ® X, where
o M'[S]={(s,7)|se€ M[S],7 € X,(M,s) = pre(r)},
o ((s,7),(s',7") € M'[i] iff (s,s") € M[i] and (7,7") € R;, and
e Foreach feF, M'[x|((s,7))ES iff f—~pEsuband (M, s)E=.

Intuitively, the Kripke structure M is obtained from the component-wise cross-product
of the old structure M and the update model X, by keeping only those new states (s, 7)
s.t. (M, s) satisfies the action precondition.



Example 2. Continuing with the previous examples, let us compute M’ = M; @ Xy:
o M'[S]={(s1,0),(s2,0)}. Let u=(s1,0) and v=(s2,0).
o M'[A] = M'[C] = {(u,u), (v,v)} and M'[B] = {(u,u), (v,v), (u,v), (v,u)}.
o M'[n](u) = {head, ~closed} and M'[x](v) = {—=head, ~closed}. a

An update template is a pair (X, I") where ¥ is an update model with the set of
events X' and I C Y. The update of a state (M, s) given a update template (X,1I") is a
set of states, denoted by (M, s) ® (X, I'), where for each (M’, s")e(M, s) ® (X, T), it
holds that M'=M @ ¥ and s’ = (s, 7) where 7 € I"and s’ € M'[S].

Observe that the discussion in this section focuses on the changes caused by an up-
date model X (resp. update template (3, I")) on a state (M, s). It does not place any
requirement (e.g. S5) on the Kripke structure M of the state. In a dynamic environment,
agents might be unaware of action occurrences and thus could have false beliefs. For
instance, the agent C' (Example 1) would still believe that agent A does not know the
status of the coin after A executes the action sequence (i)-(iv). As such, it will be inter-
esting to investigate the properties of the Kripke structures after an update by an update
model. We leave this as an important future research topic as it is outside the scope of
this paper.

3 Basic ASP Encodings

In this section, we will present the ASP rules encoding the update operator. The encod-
ing is general and does not assume any properties of the underlying Kripke structures.

Encoding Kripke Structures in ASP: Each fluent and belief formula of interest (i.e.,
used in the domain specification) ¢ is represented by a corresponding term 7(y), de-
fined in the natural recursive manner:

e if o is true, then 7(p) = top
if ¢ is a fluent, then 7(f) = f
if ¢ is the literal = f, then 7(—f) = neg(f)
if ¢ is the formula 1 V @q, then 7(¢) = or(7(p1), T(p2))
if ¢ has the form B; 1, then 7(¢) = b(i, 7(¢1))
In order to represent a Kripke structure, we need to describe its three components:
the state symbols, their associated interpretations, and the accessibility relations. We
will assume that each pointed Kripke structure has a name—represented by a term;
we will use pointedKS(t) to assert that ¢ is the name of a pointed Kripke structure. The
components of each pointed Kripke structure (M, s) A pointed Kripke structure (M, s),
named ¢(;z,s), is described by atoms of the form:
state(u, t(yr,s)) denoting the fact that u € M[S];
real(s, i M,S)) denoting that s is the real state of the world in the Kripke structure;
7(i,u,v,t(pr,s)) denoting the fact that (u,v) € M[d];
holds(7(£),u,t(a,s)) denoting the fact that M [r](u) = £ for a fluent literal £.




The following constraints are useful to guarantee core properties of a Kripke structure:
foreach f € F,u € M[S]

— holds(T(f),u,t(n,s)), holds(T(=f), u, t(as,s))
<« not holds(7(f),u,t(n,s)), not holds(T(—f), u, t(ar,s))

The predicate holds(7(¢), s,t(nr,s)) expresses the truth value of a formula ¢ with re-
spect to a pointed Kripke structure (M, s) (i.e., (M, s) |= ¢), and is defined recursively
on the structure of . For example:

e if ¢ is a literal, then its definition comes from the pointed Kripke structure;

e if ¢ is of the form (1 V ¢4 then:

holds(or(7(p1),7(p2)),S,T) + holds(t(¢1),S,T)
holds(or(1(¢1),7(v2)), S, T) «+ holds(t(¢2),S,T)

e if  is of the form B,y then:

n_holds(b(i, 7(p)),S,T) < r(i,S,51,T), not holds(t(p1), 51, T)
holds(b(i, 7(¥)), S, T) <+ notn_holds(b(i,7(¢)),S,T)

e if ¢ is of the form E,¢; then:

n_holds(7(¢),S,T) <+ not holds(b(i,7(¢1)),S,T) foreachi € o
holds(7(¢),S,T) < notn_holds(t(y),S,T)

e if is of the form Cy p; then:

connect(S, S1,a,T) <« r(i,S,51,T) foreachi € o
connect(Sl,SQ,oz T) + connect(S1,S3,a,T), connect(Ss, Sz, a, T)
n_holds(t(p),S,T) < connect(S,S1,a,T),not holds(t(p1),S1,T)
holds(7 (), S, T) + notn_holds(t(y),S,T)

Observe that the above encoding utilizes the following property: (M, s) &= Cyp iff
(M,s") | ¢ for every state s' € M|S] such that there exist a sequence of agent
i1,...,4; € « and a sequence of states s, ..., s, such that s; = s, sp = &', and
Siv1 € Mi]for1 <i < k.

For a formula ¢, let HZ denote the set of rules defining holds(7(p),S,T) (includ-

ing the rules for the sub-formulae of ). For a pointed Kripke structure (M, s), let

kpt (M, s) be the following set of facts:

e real(s,t);

o state(u,t) for each u € M[S];

e r(a,u,v,t)if (u,v) € Mlal;

e holds(¢,u,t) if (M, u) = ¢, for each fluent literal £.

Proposition 1. I1(M, s,t) = xp'(M, s)UII!, has a unique answer set S and (M, u) =
@ iff holds(T(p),u,t) € S.

Encoding Update Models and Update Templates: The encoding of an update model
and update template follows an analogous structure as a Kripke structure; given an
update template (X, I") where X = (X, {R; | i € AG}, pre, sub), we introduce a fact
of the form updateT(t) to indicate that ¢ is the term naming the update template. The
description of (X, I") contains the rules vt (X, I'):




actual(e,t) foreach e € T

event(e,t) foreach e € X;

acc(a, e e’ t)if (e,e') € Rg;

pre(e, 7(p), t) if pre(e) = ¢;

sub(e, 7(f), 7(v),t) and sub(e, 7(—f), 7(—¢), t) if (f — ) € sub(e)and ¢ £ f.
In the case of an update instance, vu! (X, I') will contain a single fact of actual.

Encoding Update Operators in ASP: The outcome of the update operation between
a pointed Kripke structure and an update instance is a new pointed Kripke structure;
the rules encoding the update operation will thus define the relations describing the
components of the new pointed Kripke structure.’ Let us introduce the fact occ(t g, t5)
to identify the application of an update instance to a given pointed Kripke structure.
The following rules are used to determine the pointed Kripke structure resulting from
the application of an update mode.
The identification of the new pointed Kripke structure comes from the rule

pointed KS(app(KS,UT)) + pointedKS(KS),updateT(UT), occ(KS,UT)
The states of the new Kripke structure are defined as follows:

state(st(S, E), app(KS,UT)) + occ(KS,UT), state(S, KS), event(E,UT),
pre(E,F,UT), holds(F, S, KS)

The accessibility relation of the new pointed Kripke structure is a direct consequence
of the accessibility relations of the Kripke structure and the update model:

r(Ag, st(S1, E1), st(S2, E2),app(KS,UT)) + occ(KS,UT),
state(st(S1, E1), app(K S,UT)),
state(st(S2, E2),app(KS,UT)),
r(Ag,S1,52,KS),acc(Ag, E1, E2,UT)

The real state of the world is defined by

real(st(S, E),app(KS,UT)) + occ(KS,UT), state(st(S, E),app(KS,UT)),
real(S, KS), actual(E,UT)

Finally, we need to determine the interpretations associated to the various states:

complement(F,neg(F)) «— fluent(F)

complement(neg(F), F) — fluent(F)

holds(L, st(S, E),app(KS,UT)) < occ(KS,UT), state(st(S, E),app(KS,UT)), literal(L),
sub(E, L, Form,UT), holds(Form, S, KS)

holds(L, st(S, E), app(KS,UT)) < occ(KS,UT), state(st(S, E), app(KS,UT)), literal(L),
complement(L, L1), holds(L, S, KS),
not holds(L1, st(S, E), app(KS,UT))

Let us denote this set of rules with an. To prepare for the following proposition, let us
introduce some notations. Given an update model 3 = (X, {R; | i € AG}, pre, sub),
let us define @(X) = {¢ | e € X. (f — ¢) € sub(e)} U {pre(e) |e € X}.

5 The code has been simplified for readability—e.g., by removing some domain predicates.



Proposition 2. Ler (M, s) be a pointed Kripke structure and let (3, 1") be an update
template. Let t1 be the term denoting the name given to (M, s) and ty the term denoting
the name given to (%, I). Let

I((M,s),t1, (2, 1), t2) = ar Ukp™ (M, s) Uvp' (2, ) U U T3 U {oce(t, t2)}.
PED()

Let S be an answer set of II((M, s),t1, (3, I"),t2). Then

(u,e) € (M @ X)[S] iff state(st(u, e), app(t1,t2)) € S

((u,e), (u',€)) € (M @ X)[i] iff r(i, st(u,e), st(uv',€'), app(ti, t2)) € S
( , (u,€)) = ¥ iff holds(T(v), st(u, e), app(t1,t2)) € S

( (u,e)) € (M,s)® (X, 1) iff real(st(u, e), app(t1,t2)) € S

O O O O

R &
™M M

4 An Application in Multi-agent Planning

In this section we instantiate the generic principles illustrated above to the case of a
multi-agent action language—the language m.Ay [14]. We review the syntax of m.Ag
and illustrate the specific encoding of some of its actions using ASP.

4.1 Syntax

The action language m.4g is based on the same logic language introduced in Section
2.2. We extend the language signature with a set A of actions.

For the Strongbox domain, the set AG = {A, B,C}, the set of fluents contains
the fluents head (the coin is head’s up), closed (the box is closed), looking(i) (agent
i is looking at the box), and key(i) (agent 7 has a key), and the set of actions include
actions like open(i) (agent ¢ opens the box), peek(i) (agent i peeks into the box), and
announce(i, ) (agent ¢ announces that the formula ¢ is true).

Each action is associated to exactly one executability law of the form

executable a if (n

indicating that the action a € AG can be executed only if the formula v is satisfied.
We distinguish three types of actions in m.Ag, i.e., A = A, W As W A,:
e Ontic actions are used to modify properties of the world; they are described by

statements of the form
a causes /(if 2)

indicating that the action a € A, will make the literal ¢ true if the action is executed
and the formula v is satisfied. For example, the action open(i) is described by:
open(i) causes —closed if true
e Sensing actions enable agents to observe unknown properties of the world, refining
their knowledge. Each sensing action a € A is described by a statement

a determines f 3)

where f € F is the property being observed. For example, the peek(7) action is
described by: peek(i) determines head.



e Announcement actions are used by an agent to share knowledge with other agents;
each announcement action a € A, is described by a statement of the form

a announces @ C)

where ¢ is a formula describing the knowledge being shared. For example, the ac-
tion announce(i, ~head) is described by:
announce(i, ~head) announces —head
Another distinct feature of m.Ay is action observability; the effects of each action on
a pointed Kripke structure is dependent on which agents can observe the execution of
the action and its effects. This is a dynamic property which is handled explicitly in the
domain description through statements of the form:

ag observes a if ¢ (®)]
ag partially_observes a if ¢ (6)

where a € A and ¢ is a formula. For example (for X,Y € AG):
X observes peek(X) if true
X partially_observes peek(Y) if X #Y Alooking(X)

A domain description D is a collection of statements of the type (1)-(6). For sim-
plicity, we assume that each action has one statement of type (1); we also assume that
each sensing and announcement action is described by one statement of type (3) or (4).

The semantics of m.Ag has been introduced in [3, 4] and it relies on the definition
of a transition function ¢ (a, B) which determines the result of executing an action a
in a set of pointed Kripke structures B (a.k.a. a belief state)—as a new belief state.

4.2 Modeling m.Ag Actions in ASP

Executability. We envision actions being executed in a state of the world/knowledge
described by a pointed Kripke structure. Actions can be executed only if their exe-
cutability condition is met; if @ is an action and executable a if 1 is its executability
law, then we add to ec? the constraint

« occ(t, a),real(s,t), not holds(1 (), s,t)

Observability. Let us introduce three ASP predicates that will capture the observability
properties of an action: obs indicating that an agent is fully knowledgeable of the effects
of the action, pobs indicating that the agent is only aware of the action execution but
not its effects, and obv denoting that the agent is oblivious about the action execution.
The rules defining these predicates compose the logic program of3!. For each action a,
if i observes a if isin D, then oS¢ contains

0bs(i,a,t) < real(s,t), occ(t,a), holds(t(p), s,t)
If D contains 7 partially_observes a if ¢, then oS¢ contains

pobs(i,a,t) < real(s,t),occ(t,a), holds(T(p), s, t)
Finally, we need to add to o3 the rules

obu(i, a,t) < occ(t, a), not 0bs(i, a,t), not pobs(i, a, t)



For the sake of the discussion in the following subsections, given an action a and a
pointed Kripke structure (M, s), we define

Q
—
£
=
oY

\

—

s

(i observes aif ) € D,(M,s) E ¢}
B(a,M,s) = {i| (i observes aif ) € D, (M,s) | ¢}
v(a, M, s) = AG\ (a(a, M,s) U B(a, M,s))

a(aM,s) U B(a,M,s) a(aM,s) U B(aM,s)

@ v(@a,M,s)
€ s o] €
T v(@M,s, T v(@aM,s)
—QAY ~fAY
a(a,M,s) u B(a,M,s) a(a,M,s) u B(a,M,s)

(@) (b) (c)

Fig. 2. Graphical Representations of the Update Templates

Announcements Actions. Let us consider an announcement action a described by
the law a announces (. This action can be captured by an update template which
is schematically summarized in Figure 2(a) (the double circle denotes the real event,
the formulae inside the circles represent the precondition pre). For this update model,
sub(e) = () for each e € X. The intuition behind this update model is as follows: o
represents the actual announcement, which will make all agents in «(a, M, s) aware
that ¢ is true; the agents in 3(a, M, s) will partially observe the action, thus learning
that all agents in «(a, M, s) are aware of the value of ¢, but unable to know whether
@ or —p is true—and thus they cannot distinguish between the even o and the event 7
(that announces —p. The agents in y(a, M, s) are unaware of the action execution and
thus do not see any change of beliefs (this is encoded by the event €).

Let us denote this update model by a,(T) = (3.(T), [,(T)), where T is the
identification of the pointed Kripke structure in which the update model is performed
and a is the e action. This behavior is coded in ASP by the following collection of facts:

e The actual event is described by actual(o, a,(T'))
e The collection of events is {event(o, a,(T')), event(r,a,(T)), event(e, a,(T))}.
e The accessibility relations among events are described as follows:

Agent,o,7,a,(T)) < pobs(Agent,a,T)
acc(Agent, 7,0,a,(T))  + pobs(Agent,a,T)
acc(Agent, S1,€,a,(T)) <« S1 € {o,7},0bv(Agent,a,T)

acc(Agent, S1,51,a,(T)) < Si € {1,0,€},0bs(Agent,a,T)
acc(Agent, S, S1,a,(T)) <+ S1 € {r,0,€}, pobs(Agent,a,T)
acc(Agent, e e,a,(T)) <+ obv(Agent,a,T)
acc(

(

(

Sensing Actions. Let us consider a sensing action s described by the law s determines f.
This action can be captured by an update template which is schematically summarized
in Figure 2(b). For this update model, sub(e) = ) for each e € X. The intuition is sim-
ilar to the case of announcement actions; o represents the the sensing action detecting



that the fluent f is true, while 7 is the sensing action detecting the fluent f being false;
the action € is viewed by the agents that are oblivious of the action execution.

Let us denote this update model by s;(T") = (2,(T), Is(T)), where T is the iden-
tification of the pointed Kripke structure in which the update model is performed and s
is the name of the action. This behavior is coded in ASP by the following facts:

e The actual event is described by actual(o,s;(T'))
e The collection of events is {event(o, s;(T)), event(r,ss(T')), event(e, sy (T))}.
e The accessibility relations among events are described as follows:

acc(Agent, Sy, S1,s7(T)) < S1 € {7,0,€},0bs(Agent, s, T)

(
acc(Agent, Sy, S1,s5(T)) < S1 € {7,0,€}, pobs(Agent, s, T)
cc(Agent, e, e,s5(T) « obv(Agent,s,T)
(
(
(

Q

)
acc(Agent,o,7,s7(T)) « pobs(Agent,s,T)
acc(Agent,7,0,s¢(T)) <+ pobs(Agent,s,T)
acc(Agent, S1,¢e,s5(T)) <« S1 € {o,7},0bv(Agent,s,T)

Ontic Actions. Let us consider an ontic action o described by the set of laws

o causes (1 if ¢1,...,0 causes /, if ;. For the sake of simplicity, we assume here
that the various ¢; are simply literals (i.e., a fluent or its negation). This action can be
captured by an update template which is schematically summarized in Figure 2(c). For
this update model, sub(e) = @ while

sub(o) = {f = ¢V f|(ocauses fif ¢) € DYU{f — —pA f]|(ocauses —fif ¢) € D}

Intuitively, the event o denotes the actual world-changing event, seen by all agents
witnessing the action execution, while € is the event witnessed by all other agents.

Let us denote this update model by o(T") = (X,(T), [,(T)), where T is the identi-
fication of the pointed Kripke structure in which the update model is performed and o
is the name of the action. This behavior is coded in ASP by the following facts:

e The actual event is described by actual(o, o(T))
e The collection of events is {event(o,0(T)), event(e,o(T))}.
e The accessibility relations among events are described as follows:

acc(Agent, S1,S1,0(T)) < S1 € {0, ¢}, 0bs(Agent,o0,T)
acc(Agent, e, e,0(T)) < obv(Agent,o,T)
acc(Agent,o,¢,0(T)) <+ obv(Agent,o,T)

e The substitution is described by all facts of the form (1 < ¢ < n)

sub(o, fi,7(pi V fi),0(T)) is the fluent f;
sub(o, fi,T(mpi A fi),0(T)) ¥; is the literal = f;

To conclude this section, it is possible to show that, for each type of action de-
scribed, the following property holds.

Proposition 3. Let a be an action described by the update model n(T) and let (M, s)

be a pointed Kripke structure. Let us consider the program IT((M, s),t1,n(M, s), t2).
Then for each formula 1 the following holds: for each pointed Kripke structure (M’ s') €
Dpla,{(M,s)}), (M',s") = iff there exists an answer set A of I (M, s),t1,n(M, s), t2)
such that real(z,v) € A and holds(t(¢),x,v) € A.



4.3 ASP for Reasoning in m.A4g

Various forms of reasoning can be realized using the set of rules described earlier. We
illustrate some of these next.

Projection. Given a sequence of actions aq,...,a, and a pointed Kripke structure
(M, s), let us denote with &%, ([aq,...,ax],(M,s)) the set of pointed Kripke struc-
tures derived from the execution of the given sequence of actions starting in the pointed
Kripke structure (M, s). Let us denote with ut(a;) the update model of the action a;.
Let us generalize the definition of II given earlier as

), tk) = amUkp' (M, s)
R°((M, s),to, ut(a1), t1,...,ut(ax), tx) = to
Hj((M,s),tg,ut(al)Jl,...,ut(ak),tk) = Hjil((M, s),to,ut(al),tl,...,ut(ak)7tk)U
it (ut(a3)) U U,y couica,y 161U
{occ(R7™H((M, s), to, ut(a1),t1, ..., ut(ag), tr), t;)}
RI((M,s),to,ut(a1),t1,...,ut(ar),tx) = app(R7~((M,s),to,ut(a1), t1,...,ut(ar),tx),t;)
H((M7s),to,ut(a1),t1,...,ut(ak),tk) = Hk((M,s)Jo,ut(al),th...,ut(ak),tk)

A projection query has the form ¢ after aq,...,ax; the query is entailed w.r.t.
(M, s) if for each (M', s") € &*([aq, ..., ax], (M, s)) we have that (M’, s") = .

A program to answer the projection query can be realized by adding to
(M, s),to,ut(ay),ty,...,ut(ag), ;) the rules

+ real(s, R*((M, s), to, ut(a1),t1,...,ut(ax), tx)),
not holds(T(g), s, RF((M, s), to, ut(a1), ta, ..., ut(ar), tx))

Let us denote with Prj,((M, s),to,ut(a1),t1,. .., ut(a),tx) this program.

Proposition 4. The program Prj,((M,s),to,ut(a1),t1,...,ut(ax),ty) has an an-
swer set A iff the projection query o after aq, ..., ay is entailed w.rt. (M, s).

Planning. The generalization of projection queries to planning is simple. Let us con-
sider the case of planning with a finite horizon % and let us consider a formula  repre-
senting the planning goal. The rules to generate occurrences of actions

current(to, 0).
Hoce(M, A) : action(A)}1 + current(M,T).
current(app(M, A), T + 1) < occ(M, A), current(M,T)

The validation of the goal can be described by the constraint
— current(M, k), real(S, M), holds(t(y), S, M).

Let us consider the program Plan,, ((M, s), to, k) containing the following rules:
e The rules a;
e The rules kp' (M, s);
e The rules vu'i (ut(a;)) for each action a; with update model ut(a;);



e The rules U¢€¢(ut(ai)) H;F for each action a;; and
e The described rules for action occurrence generation and for goal validation.

Proposition 5. Ler (M, s) be a pointed Kripke structure, an horizon k, and a formula
. Then, the program Plan,(M, s,to, k) has an answer set iff there is a sequence of
actions ay, . . ., ay, such that (M, s) entails o after aq,...,a.

4.4 From Theory to Practice

Towards a More Practical ASP Encoding. In this section, we will discuss practical
issues that we have to address in order to derive a workable implementation from the
ideas presented in the previous sections. We will assume that the initial pointed Kripke
structure is given and is encoded following the description in Section 3. The standard
components of an ASP program for plan generation are not changed with respect to
the description in the previous section. Since we are working with one pointed Kripke
structure at a time and the execution of an action in a pointed Kripke structure results in
a pointed Kripke structure, the naming of Kripke structures can be simplified by using
the time step of the planning problem (Subsection 4.3).

Because the answer set solver c1ingo accepts A-restricted programs we can iden-
tify formulae by themselves, providing that they are defined by the predicate formula/1.
The following code defines the types of formulae that we will be considered in the pro-
gram. To make the program A-restricted, we consider only formulae that contain at most
m operators and connectives.

2 {formula(F), length(F, 1)}:- fluent (F).

2 {formula(neg(F)), length(neg(F), 1)}:— fluent (F).

2 {formula (knows (A,F)), length(knows(A,F), L+1)}:-
formula (F), length(F, L), L < m, agent (A).

2 {formula(and(F1,F2)), length(and(F1l,F2), L1+L2)}:-
formula(Fl), formula(F2), length(Fl, L1),
length(F2, L2), L1+L2 < m.

2 {formula(or(Fl1,F2)), length(or(F1,F2), L1+L2)}:-
formula(Fl), formula(F2), length(F1l, L1),
length(F2, L2), L1+L2 < m.

2 {formula(neg(F)), length(neg(F), L+1)}:-

formula(F), length(F, L), L < m.

The encoding of the updates caused by the update models on pointed Kripke struc-
tures can also be simplified by observing that there are at most three events (o, 7, and
€, see Subsection 4.2) in each update model. Since the update models corresponding to
the actions are known, it is possible to specialize the code that implements the update
operations w.r.t these known update models. For example, let us consider the action
open(X) from the Strongbox domain. Since this is an ontic action, we deal with two
events o and e. State symbols o(S, E) for the next pointed Kripke structure are com-
puted as follows:

state (o (S, sigma),T+1) :— state (o (S, epsilon), T+1) :-
occ (open (X), T), occ (open(X), T),



ontic (open(X)),time(T), T < n, ontic (open(X)), time(T),
state (S, T), connected(S, T), T < n, state(s, T),
holds (has_key (X), S, T). connected (S, T).

The first rule states that o (S, sigma) is a new state symbol of the pointed Kripke
structure at time step 1"+ 1 if S is a state symbol of the structure at time step 7" and the
action open(X) is performed at time 7'. Note that n denotes the length of the desired
plan.

The accessibility relation is defined as follows:

r(X,o(Sl,sigma),o0(S2,sigma),T+1l):— time(T), T < n,
state(o(Sl, sigma), T+1l), state(o(S2, sigma), T+1),
obs (X, T), «r(X, S1, S2, T).

r(X, o(sl, epsilon), o(S2, epsilon), T+1l):- time(T), T < n,
state(o(Sl, epsilon), T+1l), state(o(S2, epsilon), T+1),
agent (X), r(X, S1, s2, T).

r(X, o(sl, sigma), o(S2, epsilon), T+1l):- time(T), T < n,
state(o(Sl, sigma), T+1l), state(o(S2, epsilon), T+1),
obv (X, T), r(X, S1, S2, T).

The encoding of the interpretation can also be simplified as follows:
holds (F, o(S, sigma), T+1):- time(T), T < n,

state(o (S, sigma), T+1),
ontic (open (X)), occ(open(X), T), holds(F, S, T).

holds (opened, o(S, sigma), T+1l):- time(T), T < n,
state(o(S, sigma), T+1l), ontic(open (X)), occ(open(X), T).
holds (F, o(S, epsilon), T+1) :— time(T), T < n,

state(o(S, epsilon), T+1), holds(F, S, T).

The first two rules define the interpretation for the new state o (S, sigma). The first
one encodes the inertial axiom and the second encodes a positive effect of open(a). The
last rule encodes the interpretation for the state o (S, epsilon), which is the same as
that of S.

The encoding can be used for two purposes: projection and planning. To verify the
executability of an action sequence, we can add the action occurrences as facts and
verify whether an answer set exists. To compute a plan, we need to add the goal as a
constraint; e.g., for the goal of having a to know the state of the coin and both b and ¢
be oblivious, we can use the following code:

goal :- real(S, n), holds(b(a, head), S, n),
holds (b (b, neg(or(b(a, head), b(a, neg(head))))),S,n),
holds (b(c, neg(or(b(a, head), b(a, neg(head))))),S,n),
:— not goal.

Some Experimental Results. We have experimented the above mentioned encoding
with the Strongbox domain used earlier and a more complicated domain, called the
Prison domain. In the latter, we have agents a, b, and ¢, where agent a, a friend of ¢ (a
double agent in the organization of b), is in the custody of an hostile agent b. a needs ¢’s



help to escape. a needs to take the key without b knowing about it, and make ¢ aware
that he has the key. He cannot do that while b is watching. ¢ can only be aware of a’s
action if he is watching a. ¢ can make a aware of his presence by making noise (e.g.,
shouting). a could also look around for c.

All experiments have been performed a Mac OS machine with an Intel Core i7 2.8
GHz processor and 16 GB memory. The codes used in the experiments are available
for download. A detailed discussion on the Prison domain can be found in [4]. The
ASP solver used for the experiments is c1ingo version 3.0.3 (based on clasp version
1.3.5).

Our initial experiments with the code reveal that, even with m = 3 (the maximal
length of formula), c1ingo uses most of the time for grounding the formulae and the
related rules. For example, clingo was not able to return a plan for the Strongbox
domain goal described earlier (i.e., a is aware of the state of the coin while b and c are
not) within 1 hour. To this end, we simplify the encoding using a preprocessing step,
which extracts all the formulae that are used in the goal and in the action descriptions,
and specializes the encoding to focus exclusively on this set of formulae. With this
optimization, clingo was able to generate plans in just a few minutes.

In the Strongbox domain, with the initial pointed Kripke structure of Figure 1, the
solver was able to generate a total of 12 plans of length 4 (in 25 seconds) for the
goal mentioned earlier. The first group of plans consists of two actions for a—aimed
at distracting b and ¢ (distract(a,b) and distract(a,c))—an action to open the box
(open(a)), and then an action to peek into the box (peek(a)). The first three actions can
be in any order, leading to 8 plans. A sample plan is:
occ (distract(a,c),0); occ(open(a),l); occ(distract(a,b),2);

occ (peek (a), 3)
The other group of plans represents interesting aspects of multi-agent planning. A plan
in this group contains a distract action between b and ¢ (distract(b, ¢) or distract(c, b)),
a distract action between a and the executor of the previous action, and the open(a) and
peek(a) actions. This group contains four plans, e.g.,
occ (distract (b,c),0); occ(open(a),l); occ(distract(a,b),2);

occ (peek(a), 3)

In the Prison domain, we used an initial pointed Kripke structure where a, b, and ¢
know that a is in the custody of b, b is watching a, both a and b are present, and a does
not have a key. a and b do not know whether c is present. In the real state of the world,
c is present. We experiment with the goal

goal :—- real(S, n), holds(b
holds (b(c, has_key(a)),S,
holds (b (b, neg(has_key(a)
:— not goal.

(a, has_key(a)),S,n),
nj,
))’S,n)-

The goal is related to a: obtaining the key, making c aware of this while keeping b in
the dark. This requires that ¢ announces his presence (shouting(c)) or a looks around
for ¢, a distracts b (distract(a, b)) and signals ¢ (signal(a,c)), and a takes the key
(get_key(a)). The solver was able to return the first plan within one minute. It found all
possible plans in 76 seconds (the problem admits two possible plans).



To test the scalability of the approach, we introduce a new action called free(c, a, b),
whose precondition is a conjunction of B, (has_key(a)Apresent(c)), B.(has_key(a)),
and B, .(—looking(b)) and whose effect is —custody(a,b). The minimal plan that
achieves the goal —custody(a, b) has length 5. The solver is able to generate the first
two plans in 627 seconds:
occ (shout (c),0); occ(signal(a,c),1l); occ(distract(a,b),2);

occ (get_key(a),3); occ(free(c,a,b),4)

occ (lookAround(a,c),0); occ(signal(a,c),l); occ(distract(a,b),2);
occ (get_key(a),3); occ(free(c,a,b),4)

We aborted the computation of all plans for this goal after 30 minutes without being

able to identify any additional solutions.

5 Conclusion and Future Work

In this paper, we demonstrated the use of ASP as a technology to model and encode
multi-agent planning domains where agents can perform both ontic as well as epistemic
actions. The use of ASP enables us to provide a clear semantics to this type of action
languages—providing a very high level and executable encoding of actions and their
effects on the pointed Kripke structures used to represent the state of the world. ASP
allows us also to validate models—supporting the use of different forms of reasoning,
such as projection and planning. We illustrated this possibility in two sample domains,
with encouraging results.

The work presented in this paper is aimed at laying the foundations for a large
breadth investigation in high level action languages for epistemic and ontic multi-agent
domains. In particular, there are several aspects in the design of a suitable action lan-
guage that need to be considered—such as how to embed in the action languages more
refined views of visibility of action execution (e.g., allow agents to view agents viewing
actions being executed) and how to handle actions related to dishonesty (e.g., telling
lies). Another aspect that needs to be considered is the task of planning and/or projec-
tion with respect to some initial specification since the present work assumes that the
initial state, in the form of a pointed Kripke structure, is given. The experimental steps
presented in this paper have also highlighted strengths and weaknesses of ASP in this
type of applications. In particular, it is clear that grounding remains a great concern—
indeed, in order to obtain an usable program it became necessary to devise an encoding
in ASP that restricts the set of formulae to be analyzed—something that would require
a smart translator from action theories to ASP. These aspects will be the focus of our
future work.
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